Secondary electron emission and yield spectra of metals from Monte Carlo simulations and experiments

被引:30
作者
Azzolini, Martina [1 ,2 ,3 ]
Angelucci, Marco [4 ]
Cimino, Roberto [4 ]
Larciprete, Rosanna [4 ,5 ]
Pugno, Nicola M. [3 ,6 ,7 ]
Taioli, Simone [1 ,2 ,8 ]
Dapor, Maurizio [1 ,2 ]
机构
[1] European Ctr Theoret Studies Nucl Phys & Related, Trento, Italy
[2] INFN, Trento Inst Fundamental Phys & Applicat TIFPA, Trento, Italy
[3] Univ Trento, Lab Bioinspired & Graphene Nanomech, Dept Civil Environm & Mech Engn, Trento, Italy
[4] INFN, Lab Nazl Frascati, Frascati, RM, Italy
[5] CNR, Inst Complex Syst, Rome, Italy
[6] Queen Mary Univ London, Sch Engn & Mat Sci, Mat Res Inst, London, England
[7] Italian Space Agcy, Ket Lab, Edoardi Amaldi Fdn, Rome, Italy
[8] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
关键词
secondary electron emission; Monte Carlo method; noble metals; yield; ELASTIC-SCATTERING; ENERGY-LOSS; FORMULA; ATOMS;
D O I
10.1088/1361-648X/aaf363
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we present a computational method, based on the Monte Carlo statistical approach, for calculating electron energy emission and yield spectra of metals, such as copper, silver and gold. The calculation of these observables proceeds via the Mott theory with a Dirac-Hartree-Fock spherical potential to deal with the elastic scattering processes, and by using the Ritchie dielectric approach to model the electron inelastic scattering events. In the latter case, the dielectric function, which represents the starting point for the evaluation of the energy loss, is obtained from experimental reflection electron energy loss spectra. The generation of secondary electrons upon ionization of the samples is also implemented in the calculation. A remarkable agreement is obtained between both theoretical and experimental electron emission spectra and yield curves.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 2015, J LARGE SCALE RES FA, DOI [10.17815/jlsrf-1-42, DOI 10.17815/JLSRF-1-18]
[2]   Monte Carlo simulations of measured electron energy-loss spectra of diamond and graphite: Role of dielectric-response models [J].
Azzolini, Martina ;
Morresi, Tommaso ;
Garberoglio, Giovanni ;
Calliari, Lucia ;
Pugno, Nicola M. ;
Taioli, Simone ;
Dapor, Maurizio .
CARBON, 2017, 118 :299-309
[3]  
Baglin V., 2000, 433 LHC CERN
[4]   Further developments and beam tests of the gas electron multiplier (GEM) [J].
Benlloch, J ;
Bressan, A ;
Capeáns, M ;
Gruwé, M ;
Hoch, M ;
Labbé, JC ;
Placci, A ;
Ropelewski, L ;
Sauli, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 419 (2-3) :410-417
[5]   First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation [J].
Calatroni, Sergio ;
Valdivieso, Elisa Garcia-Tabares ;
Neupert, Holger ;
Nistor, Valentin ;
Fontenla, Ana Teresa Perez ;
Taborelli, Mauro ;
Chiggiato, Paolo ;
Malyshev, Oleg ;
Valizadeh, Reza ;
Wackerow, Stefan ;
Zolotovskaya, Svetlana A. ;
Gillespie, W. Allan ;
Abdolvand, Amin .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (11)
[6]   Can low-energy electrons affect high-energy physics accelerators? [J].
Cimino, R ;
Collins, IR ;
Furman, MA ;
Pivi, M ;
Ruggiero, F ;
Rumolo, G ;
Zimmermann, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (01) :014801-1
[7]   Detailed investigation of the low energy secondary electron yield of technical Cu and its relevance for the LHC [J].
Cimino, R. ;
Gonzalez, L. A. ;
Larciprete, R. ;
Di Gaspare, A. ;
Iadarola, G. ;
Rumolo, G. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (05)
[8]   Nature of the Decrease of the Secondary-Electron Yield by Electron Bombardment and its Energy Dependence [J].
Cimino, R. ;
Commisso, M. ;
Grosso, D. R. ;
Demma, T. ;
Baglin, V. ;
Flammini, R. ;
Larciprete, R. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[9]   Electron cloud in accelerators [J].
Cimino, Roberto ;
Demma, Theo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (17)
[10]  
Dapor M, 2017, TRANSPORT ENERGETIC