Existence of positive solutions for certain nonlinear partial difference equations

被引:0
作者
Zhang, BG [1 ]
Zhou, Y
Huang, YQ
机构
[1] Ocean Univ China, Dept Math, Qingdao 266071, Peoples R China
[2] Xiangtan Univ, Dept Math, Xiangtan 411105, Peoples R China
关键词
partial difference equations; positive solutions; fixed-point theorem;
D O I
10.1016/S0895-7177(03)90091-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider nonlinear partial difference equations of the form Delta(n)(h)Delta (r)(m) (x(m,n) - cx(m-k, n-l) ) + (-1)(h+r+1)p(m,n) f (x(m - r, n-sigma)) = 0, where c is an element of R, h, r, k, l is an element of N+, tau, sigma is an element of N, {p(m,n)} m = m(0), n = n(0) is a double sequence of real numbers and f is an element of C(R, R). We obtain sufficient conditions for the existence of positive solutions of this equation using Knaster's fixed-point theorem. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 22 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations, DOI 10.1007/978-94-015-8899-7
[2]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[3]   On the oscillation of recurrence equations [J].
Agarwal, RP ;
Popenda, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (02) :231-268
[4]   Oscillation of partial difference equations with continuous variables [J].
Agarwal, RP ;
Zhou, Y .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 31 (2-3) :17-29
[5]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[6]  
[Anonymous], FINITE DIFFERENCE SC
[7]  
BRYTON RK, 1967, J MATH ANAL APPL, V18, P182
[8]  
Cheng S. S, 1996, J DIFFER EQU APPL, V2, P375
[9]  
CHENG SS, 1995, TAMKANG J MATH, V26, P337
[10]   ON PARTIAL DIFFERENCE EQUATIONS OF MATHEMATICAL PHYSICS [J].
COURANT, R ;
FRIEDRICHS, K ;
LEWY, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (02) :215-+