Ultrastable Zinc Anode by Simultaneously Manipulating Solvation Sheath and Inducing Oriented Deposition with PEG Stability Promoter

被引:73
作者
Cao, Ziyi [1 ,2 ]
Zhu, Xiaodong [1 ,3 ]
Gao, Shangpeng [3 ]
Xu, Dongxiao [1 ,2 ]
Wang, Zengyao [1 ,2 ]
Ye, Zhuolin [1 ,2 ]
Wang, Lipeng [1 ,2 ]
Chen, Bin [1 ,2 ]
Li, Lei [4 ]
Ye, Mingxin [1 ]
Shen, Jianfeng [1 ]
机构
[1] Fudan Univ, Inst Special Mat & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[4] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
dendrites; electrolyte additives; oriented deposition; solvation sheaths; zinc anodes; LONG-LIFE; ELECTROLYTE; ZN; ADDITIVES; KINETICS; GROWTH;
D O I
10.1002/smll.202103345
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries are a low-cost and safe energy storage system, but suffer from detrimental side reactions and Zn dendrites due to the strong interactions between Zn2+ and water molecules in the electrolytes, and random Zn2+ deposition on the anode surface. Here, an electrolyte involving a dual-functional additive of polyethylene glycol (PEG) to bypass these issues is reported. The electrolyte can not only tailor the solvation sheath of Zn2+ but also enable favorably oriented deposition of Zn2+ on the anode surface. The dendrite-free Zn anode in Zn//Zn cells is obtained with high Columbic efficiency (98.8%) and long cycling lifespan (1500 h), six times longer than that of electrolyte without PEG at 0.25 mA cm(-2). What is more, the excellent cycling stability of the prepared batteries (Zn//V2O5 center dot 1.6 H2O) suggests that the developed tailoring strategy may propel a promising pathway for stabilizing Zn metal anodes.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries [J].
Cao, Ziyi ;
Zhuang, Peiyuan ;
Zhang, Xiang ;
Ye, Mingxin ;
Shen, Jianfeng ;
Ajayan, Pulickel M. .
ADVANCED ENERGY MATERIALS, 2020, 10 (30)
[2]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[3]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[4]   Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte [J].
Cong, Jianlong ;
Shen, Xiu ;
Wen, Zhipeng ;
Wang, Xin ;
Peng, Longqing ;
Zeng, Jing ;
Zhao, Jinbao .
ENERGY STORAGE MATERIALS, 2021, 35 :586-594
[5]   Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries [J].
Guo, Shan ;
Qin, Liping ;
Zhang, Tengsheng ;
Zhou, Miao ;
Zhou, Jiang ;
Fang, Guozhao ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2021, 34 :545-562
[6]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)
[7]   Tailoring desolvation kinetics enables stable zinc metal anodes [J].
Hou, Zhen ;
Tan, Hong ;
Gao, Yao ;
Li, Menghu ;
Lu, Ziheng ;
Zhang, Biao .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (37) :19367-19374
[9]   3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries [J].
Kang, Zhuang ;
Wu, Changle ;
Dong, Liubing ;
Liu, Wenbao ;
Mou, Jian ;
Zhang, Jingwen ;
Chang, Ziwen ;
Jiang, Baozheng ;
Wang, Guoxiu ;
Kang, Feiyu ;
Xu, Chengjun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03) :3364-+
[10]   Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendrite-Free and Ultrastable Zinc Metal Anodes [J].
Kim, Ji Young ;
Liu, Guicheng ;
Shim, Ga Young ;
Kim, Hansung ;
Lee, Joong Kee .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)