MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism

被引:36
作者
Lee, Man Ryul [1 ,2 ]
Mantel, Charlie [1 ]
Lee, Sang A. [2 ]
Moon, Sung-Hwan [3 ]
Broxmeyer, Hal E. [1 ]
机构
[1] Indiana Univ Sch Med, Dept Microbiol & Immunol, 950 West Walnut St, Indianapolis, IN 46202 USA
[2] Soon Chun Hyang Univ, Inst Tissue Regenerat, Soonchunhyang Inst Medibio Sci, Asan 31151, Chungcheongnam, South Korea
[3] Konkuk Univ, Sch Med, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
PLURIPOTENT STEM-CELLS; SOMATIC-CELLS; COMPLEX-II; CANCER; DIFFERENTIATION; APOPTOSIS; EXPRESSION; MOUSE;
D O I
10.1016/j.stemcr.2016.05.012
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Metabolism is remodeled when somatic cells are reprogrammed into induced pluripotent stem cells (iPSCs), but the majority of iPSCs are not fully reprogrammed. In a shift essential for reprogramming, iPSCs use less mitochondrial respiration but increased anaerobic glycolysis for bioenergetics. We found that microRNA 31 (miR-31) suppressed succinate dehydrogenase complex subunit A (SDHA) expression, vital for mitochondrial electron transport chain (ETC) complex II. MiR-31 overexpression in partially reprogrammed iPSCs lowered SDHA expression levels and oxygen consumption rates to that of fully reprogrammed iPSCs, but did not increase the proportion of fully reprogrammed TRA1-60(+) cells in colonies unless miR-31 was co-transduced with Yamanaka factors, which resulted in a 2.7-fold increase in full reprogramming. Thus switching from mitochondrial respiration to glycolytic metabolism through regulation of the miR-31/SDHA axis is critical for lowering the reprogramming threshold. This is supportive of multi-stage reprogramming whereby metabolic remodeling is fundamental.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 26 条
[1]   Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency [J].
Anokye-Danso, Frederick ;
Trivedi, Chinmay M. ;
Juhr, Denise ;
Gupta, Mudit ;
Cui, Zheng ;
Tian, Ying ;
Zhang, Yuzhen ;
Yang, Wenli ;
Gruber, Peter J. ;
Epstein, Jonathan A. ;
Morrisey, Edward E. .
CELL STEM CELL, 2011, 8 (04) :376-388
[2]   Development - Deconstructing pluripotency [J].
Bang, Anne G. ;
Carpenter, Melissa K. .
SCIENCE, 2008, 320 (5872) :58-59
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J].
Bhatnagar, N. ;
Li, X. ;
Padi, S. K. R. ;
Zhang, Q. ;
Tang, M-S ;
Guo, B. .
CELL DEATH & DISEASE, 2010, 1 :e105-e105
[5]   Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21-to 23.5-year cryopreserved cord blood [J].
Broxmeyer, Hal E. ;
Lee, Man-Ryul ;
Hangoc, Giao ;
Cooper, Scott ;
Prasain, Nutan ;
Kim, Young-June ;
Mallett, Coleen ;
Ye, Zhaohui ;
Witting, Scott ;
Cornetta, Kenneth ;
Cheng, Linzhao ;
Yoder, Mervin C. .
BLOOD, 2011, 117 (18) :4773-4777
[6]   Mechanisms and models of somatic cell reprogramming [J].
Buganim, Yosef ;
Faddah, Dina A. ;
Jaenisch, Rudolf .
NATURE REVIEWS GENETICS, 2013, 14 (06) :427-439
[7]   Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells [J].
Chan, Elayne M. ;
Ratanasirintrawoot, Sutheera ;
Park, In-Hyun ;
Manos, Philip D. ;
Loh, Yuin-Han ;
Huo, Hongguang ;
Miller, Justine D. ;
Hartung, Odelya ;
Rho, Junsung ;
Ince, Tan A. ;
Daley, George Q. ;
Schlaeger, Thorsten M. .
NATURE BIOTECHNOLOGY, 2009, 27 (11) :1033-U100
[8]   Effects of a miR-31, Runx2, and Satb2 Regulatory Loop on the Osteogenic Differentiation of Bone Mesenchymal Stem Cells [J].
Deng, Yuan ;
Wu, Si ;
Zhou, Huifang ;
Bi, Xiaoping ;
Wang, Yefei ;
Hu, Yamin ;
Gu, Ping ;
Fan, Xianqun .
STEM CELLS AND DEVELOPMENT, 2013, 22 (16) :2278-2286
[9]   Metabolic Plasticity in Stem Cell Homeostasis and Differentiation [J].
Folmes, Clifford D. L. ;
Dzeja, Petras P. ;
Nelson, Timothy J. ;
Terzic, Andre .
CELL STEM CELL, 2012, 11 (05) :596-606
[10]   Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming [J].
Folmes, Clifford D. L. ;
Nelson, Timothy J. ;
Martinez-Fernandez, Almudena ;
Arrell, D. Kent ;
Lindor, Jelena Zlatkovic ;
Dzeja, Petras P. ;
Ikeda, Yasuhiro ;
Perez-Terzic, Carmen ;
Terzic, Andre .
CELL METABOLISM, 2011, 14 (02) :264-271