When is the product of Hankel operators a Hankel operator?

被引:0
作者
Gu, CX [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
关键词
block Hankel operator; Toeplitz operator; Hardy space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize when the product of two block Hankel operators on the vector-valued Hardy space is a Hankel operator. We also describe when a block Toeplitz and a block Hankel operator commute. These characterizations extend results in two recent papers by T. Yoshino and R.A. Martinez-Avendano respectively.
引用
收藏
页码:347 / 362
页数:16
相关论文
共 9 条
[1]  
AXLER S, 1978, INTEGR EQUAT OPER TH, V1, P285
[2]  
Brown A., 1964, Journal Fur die Reine und Angewandte Mathematik, V213, P89
[3]  
Foias C., 1990, COMMUTANT LIFTING AP
[4]   Products of several Toeplitz operators [J].
Gu, CX .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (02) :483-527
[5]  
Gu CX, 1999, HOUSTON J MATH, V25, P543
[6]   Separation for kernels of Hankel operators [J].
Gu, CX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2353-2358
[7]   When do Toeplitz and Hankel operators commute? [J].
Martínez-Avendaño, RA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (03) :341-349
[8]   Products of Hankel operators [J].
Xia, DX ;
Zheng, DC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (03) :339-363
[9]   The conditions that the product of Hankel operators is also a Hankel operator [J].
Yoshino, T .
ARCHIV DER MATHEMATIK, 1999, 73 (02) :146-153