Enhancing spoof surface-plasmons with gradient metasurfaces

被引:37
作者
Kong, Ling-Bao [1 ]
Huang, Cheng-Ping [2 ]
Du, Chao-Hai [1 ]
Liu, Pu-Kun [1 ]
Yin, Xiao-Gang [3 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Nanjing Tech Univ, Dept Appl Phys, Nanjing 210009, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Med, Nanjing 210016, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LIGHT; GENERATION;
D O I
10.1038/srep08772
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The coupling between surface plasmons and free electrons may be used to amplify waves or accelerate particles. Nonetheless, such an interaction is usually weak due to the small interaction length or velocity mismatching. Here a mechanism for enhancing the coupling between plasmonic fields and relativistic electrons is proposed. By using a weakly gradient meta-surface that supports the spoof surface-plasmons (SSP), the phase velocity of SSP mode can be manipulated and quasi-velocity-matching between SSP and electrons may be achieved. The dynamic coupling equations suggest that, due to the strong coupling, the energy can be extracted continuously from the relativistic electrons. The sustained increase of SSP in a narrow frequency band has been demonstrated by the particle-in-cell simulations, where the output power of SSP attains 65 W at 1 THz (with 28 mm interaction length) and the coupling efficiency is enhanced by two orders of magnitude. The results may find potential applications for designing new compact and efficient THz wave sources.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Barker R.J., 2001, HighPower Microwave Sources and Technologies
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Surface plasmon-polariton length scales: a route to sub-wavelength optics [J].
Barnes, WL .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (04) :S87-S93
[4]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[5]   Efficient Generation of Propagating Plasmons by Electron Beams [J].
Cai, Wei ;
Sainidou, Rebecca ;
Xu, Jingjun ;
Polman, A. ;
Javier Garcia de Abajo, F. .
NANO LETTERS, 2009, 9 (03) :1176-1181
[6]   The electron cyclotron maser [J].
Chu, KR .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :489-540
[7]   QUASI-PHASE-MATCHED 2ND HARMONIC-GENERATION - TUNING AND TOLERANCES [J].
FEJER, MM ;
MAGEL, GA ;
JUNDT, DH ;
BYER, RL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (11) :2631-2654
[8]   Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures [J].
Gan, Qiaoqiang ;
Fu, Zhan ;
Ding, Yujie J. ;
Bartoli, Filbert J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[9]   Surfaces with holes in them:: new plasmonic metamaterials [J].
Garcia-Vidal, FJ ;
Martín-Moreno, L ;
Pendry, JB .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (02) :S97-S101
[10]   Start Current and Gain Measurements for a Smith-Purcell Free-Electron Laser [J].
Gardelle, J. ;
Modin, P. ;
Donohue, J. T. .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)