AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS RELATED TO TUG-OF-WAR GAMES

被引:65
作者
Manfredi, Juan J. [1 ]
Parviainen, Mikko [2 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Aalto Univ, Sch Sci & Technol, FI-00076 Helsinki, Finland
[3] Univ Alicante, Dept Anal Matemat, E-03080 Alicante, Spain
基金
美国国家科学基金会;
关键词
Dirichlet boundary conditions; dynamic programming principle; parabolic p-Laplacian; parabolic mean value property; stochastic games; tug-of-war games with limited number of rounds; viscosity solutions; MINIMIZING LIPSCHITZ EXTENSIONS; INFINITY LAPLACIAN; VISCOSITY SOLUTIONS; CURVATURE;
D O I
10.1137/100782073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize solutions to the homogeneous parabolic p-Laplace equation u(t) - vertical bar del u|(2-p)Delta(p)u = (p - 2)Delta(infinity)u + Delta u in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for these games approximate a solution to the PDE above when the parameter that controls the size of the possible steps goes to zero.
引用
收藏
页码:2058 / 2081
页数:24
相关论文
共 22 条
[1]  
[Anonymous], ESAIM CONTR IN PRESS
[2]   The infinity Laplacian, Aronsson's equation and their generalizations [J].
Barron, E. N. ;
Evans, L. C. ;
Jensen, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) :77-101
[3]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]  
DOES K, 2009, THESIS U COLOGNE COL
[6]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[7]   COMPARISON PRINCIPLE AND CONVEXITY PRESERVING PROPERTIES FOR SINGULAR DEGENERATE PARABOLIC EQUATIONS ON UNBOUNDED-DOMAINS [J].
GIGA, Y ;
GOTO, S ;
ISHII, H ;
SATO, MH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :443-470
[8]  
Giga Y, 2006, Monographs in Mathematics
[9]   On the equivalence of viscosity solutions and weak solutions or a quasi-linear equation [J].
Juutinen, P ;
Lindqvist, P ;
Manfredi, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :699-717
[10]   Principal eigenvalue of a very badly degenerate operator and applications [J].
Juutinen, Petri .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :532-550