Multivariate analysis of spatial-temporal scales in melanoma prevalence

被引:2
|
作者
Valachovic, Edward [1 ]
Zurbenko, Igor [1 ]
机构
[1] SUNY Albany, Sch Publ Hlth, Dept Epidemiol & Biostat, One Univ Pl, Rensselaer, NY 12144 USA
关键词
Melanoma; Solar irradiation exposure; Spatial-temporal scales; Kolmogorov-Zurbenko; Multivariate regression; ULTRAVIOLET-RADIATION; OZONE; ASSOCIATION; EXPOSURE; TIME;
D O I
10.1007/s10552-017-0895-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Melanoma is a particularly deadly form of skin cancer arising from diverse biological and physical origins, making the characterization and quantification of relationships with recognized risk factors very complex. Melanoma has known associations with ultraviolet light exposure. Natural variations in solar electromagnetic irradiation, length of exposure, and intensity operate on different and therefore uncorrelated time scale frequencies. It is necessary to separate and investigate the principal components, such as the annual and solar cycle components, free from confounding influences. Kolmogorov-Zurbenko spatial filters applied to melanoma prevalence and environmental factors affecting solar irradiation exposure are able to identify and separate the independent space and time scale components of melanoma. Multidimensional analysis in space and time produces significantly improved model fit of what is in effect a linear regression of maps, or motion picture, in different time scales between melanoma rates and prominent factors. The resulting multivariate model coefficients of influence for each unique spatial-temporal melanoma component help quantify the relationships and are valuable to future research and prevention.
引用
收藏
页码:733 / 743
页数:11
相关论文
共 50 条
  • [1] Multivariate analysis of spatial–temporal scales in melanoma prevalence
    Edward Valachovic
    Igor Zurbenko
    Cancer Causes & Control, 2017, 28 : 733 - 743
  • [2] Linear discriminant analysis of multivariate spatial-temporal regressions
    Saltyte-Benth, J
    Ducinskas, K
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 281 - 294
  • [3] Spatial-Temporal Deviation Analysis for Multivariate Statistical Process Monitoring
    Wang, Meng
    Tong, Chudong
    Xu, Feng
    Luo, Lijia
    JOURNAL OF CHEMOMETRICS, 2024,
  • [5] A spatial-temporal analysis of low birth weight prevalence in Georgia, USA
    Tian J.
    Tu W.
    Tedders S.
    Chen D.
    GeoJournal, 5 (885-895) : 885 - 895
  • [6] Editorial: Sea Ice: Bridging Spatial-Temporal Scales and Disciplines
    Lange, Benjamin A.
    Flores, Hauke
    Bowman, Jeff S.
    Rintala, Janne-Markus
    Castellani, Giulia
    FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [7] Multivariate spatial-temporal modeling and prediction of speciated fine particles
    Choi J.
    Reich B.J.
    Fuentes M.
    Davis J.M.
    Journal of Statistical Theory and Practice, 2009, 3 (2) : 407 - 418
  • [8] Early Event Detection Based on Multivariate Spatial-Temporal Fusion
    Liu, Xuying
    Lu, Wenda
    Wang, Jian
    Wang, Xue
    Wang, Qing
    Computer Engineering and Applications, 2023, 59 (17) : 116 - 122
  • [9] The Spatial-Temporal Dimension of Oncological Prevalence and Mortality in Romania
    Peptenatu, D.
    Nedelcu, I. D.
    Pop, C. S.
    Simion, A. G.
    Furtunescu, F.
    Burcea, M.
    Andronache, I.
    Radulovic, M.
    Jelinek, H. F.
    Ahammer, H.
    Gruia, A. K.
    Grecu, A.
    Popa, M. C.
    Militaru, V.
    Draghici, C. C.
    Pintilii, R. D.
    GEOHEALTH, 2023, 7 (10):
  • [10] Spatial-Temporal Analysis of Marine Wildlife
    Nelson, T. A.
    Duffus, D.
    Robertson, C.
    Laberee, K.
    Feyrer, L. J.
    JOURNAL OF COASTAL RESEARCH, 2009, : 1537 - 1541