Comparison of Principal Component Analysis Techniques for PMU Data Event Detection

被引:0
作者
Souto, L. [1 ]
Melendez, J. [1 ]
Herraiz, S. [1 ]
机构
[1] Univ Girona, Intelligent Syst & Control Engn Grp, Girona, Girona, Spain
来源
2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM) | 2020年
基金
欧盟地平线“2020”;
关键词
fault detection; phasor measurement units; power system faults; principal component analysis;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Principal component analysis (PCA) is a dimensionality reduction technique often applied to process and detect events in large amounts of data collected by phasor measurement units (PMU) at transmission and distribution level. This article considers five different approaches to select an appropriate number of principal components, builds the statistical model of the PMU data online over a sliding window of 10 seconds and 1 minute, and evaluates the computation times and the accuracy of correct event detections with use of two statistical tests in a 1-hour data file from the UT-Austin Independent Texas Synchrophasor Network with phasor quantities collected at different PMU substations.
引用
收藏
页数:5
相关论文
共 10 条
[1]  
Allen Alicia., 2014, PMU data event detection: A user guide for power engineers
[2]  
Chen YH, 2013, PROCEEDINGS OF THE 2013 6TH IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), P1, DOI 10.1109/RAM.2013.6758550
[3]   Power System Real-Time Event Detection and Associated Data Archival Reduction Based on Synchrophasors [J].
Ge, Yinyin ;
Flueck, Alexander J. ;
Kim, Dae-Kyeong ;
Ahn, Jong-Bo ;
Lee, Jae-Duck ;
Kwon, Dae-Yun .
IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (04) :2088-2097
[4]   Principal Component Analysis of Wide-Area Phasor Measurements for Islanding Detection-A Geometric View [J].
Liu, X. ;
Laverty, D. M. ;
Best, R. J. ;
Li, K. ;
Morrow, D. J. ;
McLoone, S. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2015, 30 (02) :976-985
[5]  
Pen D, 2002, ANALISIS DATOS MULTI ANALISIS DATOS MULTI
[6]   Determining the number of principal components for best reconstruction [J].
Qin, SJ ;
Dunia, R .
JOURNAL OF PROCESS CONTROL, 2000, 10 (2-3) :245-250
[7]   Real-Time Multiple Event Detection and Classification Using Moving Window PCA [J].
Rafferty, Mark ;
Liu, Xueqin ;
Laverty, David M. ;
McLoone, Sean .
IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (05) :2537-2548
[8]  
Russell E.L., 2000, Data-Driven Methods for Fault Detection and Diagnosis in Chemical Processes
[9]  
Sauer P. W., 1998, Power system dynamics and stability, V101
[10]  
Xu T, 2015, INT CONF SMART GRID, P265, DOI 10.1109/SmartGridComm.2015.7436311