Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data

被引:75
作者
Hmidi, Taoufik [1 ]
Rousset, Frederic [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 05期
关键词
EQUATIONS; WELLPOSEDNESS; REGULARITY; EXISTENCE; FLOWS;
D O I
10.1016/j.anihpc.2010.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the global well-posedness for a three-dimensional Boussinesq system with axisymmetric initial data. This system couples the Navier-Stokes equation with a transport-diffusion equation governing the temperature. Our result holds uniformly with respect to the heat conductivity coefficient kappa >= 0 which may vanish. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1227 / 1246
页数:20
相关论文
共 28 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
ABIDI H, ARXIV09080894V1
[3]   Axisymmetric solution result regularity for the Navier-Stokes system [J].
Abidi, Hammadi .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07) :592-624
[4]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[5]   On the global well-posedness for the axisymmetric Euler equations [J].
Abidi, Hammadi ;
Hmidi, Taoufik ;
Keraani, Sahbi .
MATHEMATISCHE ANNALEN, 2010, 347 (01) :15-41
[6]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[7]  
Ben Ameur J., 2002, STUD MATH APPL, VXIV, P29
[8]  
BRENIER Y, 2008, ARXIV08011088
[9]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[10]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513