A practical optimality condition without constraint qualifications for nonlinear programming

被引:48
作者
Martínez, JM [1 ]
Svaiter, BF
机构
[1] Univ Estadual Campinas, Dept Math Appl, Math Inst, Campinas, SP, Brazil
[2] Inst Matematica Pura & Aplicada, CNPq, Rio De Janeiro, Brazil
基金
巴西圣保罗研究基金会;
关键词
optimality conditions; Karush-Kuhn-Tucker conditions; minimization algorithms; constrained optimization;
D O I
10.1023/A:1024791525441
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A new optimality condition for minimization with general constraints is introduced. Unlike the KKT conditions, the new condition is satisfied by local minimizers of nonlinear programming problems, independently of constraint qualifications. The new condition is strictly stronger than and implies the Fritz - John optimality conditions. Sufficiency for convex programming is proved.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 25 条
[1]   On the solution of mathematical programming problems with equilibrium constraints [J].
Andreani, R ;
Martínez, JM .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 54 (03) :345-358
[2]  
Bertsekas D. P., 1999, NONLINEAR PROGRAMMIN, V2nd
[3]   Regularity conditions in vector optimization [J].
Bigi, G ;
Pappalardo, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (01) :83-96
[4]   A STRATEGY FOR GLOBAL CONVERGENCE IN A SEQUENTIAL QUADRATIC-PROGRAMMING ALGORITHM [J].
BOGGS, PT ;
TOLLE, JW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :600-623
[5]  
CASTELLANI M, 1997, RENDICONTI CIRCOLO 2, V48, P27
[6]  
DENNIS JE, 1995, SIAM J OPTIMIZ, V5, P177
[7]   REGULARITY CONDITIONS FOR CONSTRAINED EXTREMUM PROBLEMS VIA IMAGE SPACE [J].
DIEN, PH ;
MASTROENI, G ;
PAPPALARDO, M ;
QUANG, PH .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (01) :19-37
[8]   A smoothing method for mathematical programs with equilibrium constraints [J].
Facchinei, F ;
Jiang, HY ;
Qi, LQ .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :107-134
[9]   ON THE RECIPROCAL VECTOR OPTIMIZATION PROBLEMS [J].
FAVATI, P ;
PAPPALARDO, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (02) :181-193
[10]   Solution of a general linear complementarity problem using smooth optimization and its application to bilinear programming and LCP [J].
Fernandes, L ;
Friedlander, A ;
Guedes, M ;
Júdice, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (01) :1-19