Ultra-stable high voltage lithium metal batteries enabled by solid garnet electrolyte surface-engineered with a grafted aromatics layer

被引:13
作者
Li, Jin [1 ,2 ,3 ]
Zhang, Haitao [1 ,2 ,3 ,4 ]
Cui, Yingyue [1 ,2 ,3 ]
Da, Haoran [1 ,2 ,3 ]
Cai, Yingjun [1 ,3 ]
Zhang, Suojiang [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[4] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
关键词
Solid-state electrolytes; Surface engineering; Azo compound; Free radical; Conversion chemistry; INTERFACIAL RESISTANCE; POLYMER ELECTROLYTE; STRATEGIES; CONDUCTION; EFFICIENT; PROGRESS;
D O I
10.1016/j.cej.2022.138457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The instability and Li2CO3 contaminants of garnet-type electrolytes exposed to air could lead to in its poor interfacial contact with the lithium metal. Generally, the thermal treatment temperature of garnet should overpass 700 & DEG;C to remove surface contaminants. Herein, we report a low temperature method in which con-taminants are converted to the aromatics lithiophilic interface via a simple azo reaction at 60 & DEG;C. The free radicals formed by the decomposition of the azo compound are grafted onto garnet, thereby the garnet compatibility in lithium metal batteries (LMBs) are improved effectively. The reaction mechanism is confirmed by density functional theory calculations, comprehensive electrochemical characterizations, and applying designed azo compounds. The modified garnet membrane shows a high mechanical property and reduced interfacial impedance, high Young's modulus of 169.99 GPa and ionic conductivity of 0.457 mS/cm at 20?. Subsequently, combined XPS depth etching and TOF-SIMS characterizations show that the interfacial layer is composed of a rich C-F bond surface layer and a rich-LiF bottom layer, enabling rapid transport and uniform deposition of lithium ions. Moreover, the superior cycling stability facilitated by modified composite electrolyte is demonstrated in Li/LiFePO4 and Li/LiNi0.5Co0.2Mn0.3O2 full batteries. This new conversion chemistry via azo compound provides a practical solution for achieving high-energy solid-state LMBs.
引用
收藏
页数:10
相关论文
共 55 条
[31]   Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer [J].
Lou, Jiatao ;
Wang, Guoguang ;
Xia, Yang ;
Liang, Chu ;
Huang, Hui ;
Gan, Yongping ;
Tao, Xinyong ;
Zhang, Jun ;
Zhang, Wenkui .
JOURNAL OF POWER SOURCES, 2020, 448
[32]   Ultrathin LiV2O4 Layers Modified LiNi0.5Co0.2Mn0.3O2 Single-Crystal Cathodes with Enhanced Activity and Stability [J].
Lu, Yao ;
Zeng, Xifeng ;
Wang, Jun ;
Yang, Lishan ;
Hu, Shuai ;
Jia, Chuankun ;
Zhao, Haihong ;
Yin, Dulin ;
Ge, Xingbo ;
Xi, Xiaoming .
ADVANCED MATERIALS INTERFACES, 2019, 6 (22)
[33]   Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte [J].
Luo, Wei ;
Gong, Yunhui ;
Zhu, Yizhou ;
Fu, Kun Kelvin ;
Dai, Jiaqi ;
Lacey, Steven D. ;
Wang, Chengwei ;
Liu, Boyang ;
Han, Xiaogang ;
Mo, Yifei ;
Wachsman, Eric D. ;
Hu, Liangbing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (37) :12258-12262
[34]   Constructing a "pea-pod"-like nanostructure to provide valid conductive matrix and volume change accommodation for silicon anode in lithium ion batteries [J].
Ma, Jingjing ;
Zhang, Huan ;
Li, Yuanchao ;
Hu, Linfeng ;
Wang, Qing ;
Zhang, Wanqing ;
Yang, Li ;
Xu, Guang-Ri ;
He, Yu-Shi ;
Lou, Tianjun ;
Ma, Zi-Feng .
GREEN CHEMICAL ENGINEERING, 2021, 2 (03) :327-335
[35]   Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J].
Murugan, Ramaswamy ;
Thangadurai, Venkataraman ;
Weppner, Werner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7778-7781
[36]   Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis [J].
Nasef, MM ;
Saidi, H .
APPLIED SURFACE SCIENCE, 2006, 252 (08) :3073-3084
[37]   A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries [J].
Pan, Kecheng ;
Zhang, Lan ;
Qian, Weiwei ;
Wu, Xiangkun ;
Dong, Kun ;
Zhang, Haitao ;
Zhang, Suojiang .
ADVANCED MATERIALS, 2020, 32 (17)
[38]   Trifluoromethyl-free anion for highly stable lithium metal polymer batteries [J].
Qiao, Lixin ;
Oteo, Uxue ;
Zhang, Yan ;
Rodriguez Pena, Sergio ;
Martinez-Ibanez, Maria ;
Santiago, Alexander ;
Cid, Rosalia ;
Meabe, Leire ;
Manzano, Hegoi ;
Carrasco, Javier ;
Zhang, Heng ;
Armand, Michel .
ENERGY STORAGE MATERIALS, 2020, 32 :225-233
[39]   Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte [J].
Ren, Yaoyu ;
Shen, Yang ;
Lin, Yuanhua ;
Nan, Ce-Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 57 :27-30
[40]   Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet Type Solid-State Li Batteries [J].
Shao, Yuanjun ;
Wang, Hongchun ;
Gong, Zhengliang ;
Wang, Dawei ;
Zheng, Bizhu ;
Zhu, Jianping ;
Lu, Yaxiang ;
Hu, Yong-Sheng ;
Guo, Xiangxin ;
Li, Hong ;
Huang, Xuejie ;
Yang, Yong ;
Nan, Ce-Wen ;
Chen, Liquan .
ACS ENERGY LETTERS, 2018, 3 (06) :1212-1218