Ultra-stable high voltage lithium metal batteries enabled by solid garnet electrolyte surface-engineered with a grafted aromatics layer

被引:13
作者
Li, Jin [1 ,2 ,3 ]
Zhang, Haitao [1 ,2 ,3 ,4 ]
Cui, Yingyue [1 ,2 ,3 ]
Da, Haoran [1 ,2 ,3 ]
Cai, Yingjun [1 ,3 ]
Zhang, Suojiang [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[4] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
关键词
Solid-state electrolytes; Surface engineering; Azo compound; Free radical; Conversion chemistry; INTERFACIAL RESISTANCE; POLYMER ELECTROLYTE; STRATEGIES; CONDUCTION; EFFICIENT; PROGRESS;
D O I
10.1016/j.cej.2022.138457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The instability and Li2CO3 contaminants of garnet-type electrolytes exposed to air could lead to in its poor interfacial contact with the lithium metal. Generally, the thermal treatment temperature of garnet should overpass 700 & DEG;C to remove surface contaminants. Herein, we report a low temperature method in which con-taminants are converted to the aromatics lithiophilic interface via a simple azo reaction at 60 & DEG;C. The free radicals formed by the decomposition of the azo compound are grafted onto garnet, thereby the garnet compatibility in lithium metal batteries (LMBs) are improved effectively. The reaction mechanism is confirmed by density functional theory calculations, comprehensive electrochemical characterizations, and applying designed azo compounds. The modified garnet membrane shows a high mechanical property and reduced interfacial impedance, high Young's modulus of 169.99 GPa and ionic conductivity of 0.457 mS/cm at 20?. Subsequently, combined XPS depth etching and TOF-SIMS characterizations show that the interfacial layer is composed of a rich C-F bond surface layer and a rich-LiF bottom layer, enabling rapid transport and uniform deposition of lithium ions. Moreover, the superior cycling stability facilitated by modified composite electrolyte is demonstrated in Li/LiFePO4 and Li/LiNi0.5Co0.2Mn0.3O2 full batteries. This new conversion chemistry via azo compound provides a practical solution for achieving high-energy solid-state LMBs.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[2]   Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery [J].
Chen, Linhui ;
Zhang, Jian ;
Tong, Rong-Ao ;
Zhang, Jingxi ;
Wang, Hailong ;
Shao, Gang ;
Wang, Chang-An .
SMALL, 2022, 18 (08)
[3]   Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery [J].
Chen, Linhui ;
Su, Yibo ;
Zhang, Jian ;
Zhang, Hongjun ;
Fan, Bingbing ;
Shao, Gang ;
Zhong, Minlin ;
Wang, Chang-An .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) :37082-37090
[4]   Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes [J].
Chen, Shimou ;
Wen, Kaihua ;
Fan, Juntian ;
Bando, Yoshio ;
Golberg, Dmitri .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) :11631-11663
[5]   Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte [J].
Chen, Wan-Ping ;
Duan, Hui ;
Shi, Ji-Lei ;
Qian, Yumin ;
Wan, Jing ;
Zhang, Xu-Dong ;
Sheng, Hang ;
Guan, Bo ;
Wen, Rui ;
Yin, Ya-Xia ;
Xin, Sen ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) :5717-5726
[6]   In-Built Quasi-Solid-State Poly-Ether Electrolytes Enabling Stable Cycling of High-Voltage and Wide-Temperature Li Metal Batteries [J].
Chen, Yong ;
Huo, Feng ;
Chen, Shimou ;
Cai, Weibin ;
Zhang, Suojiang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (36)
[7]   Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces [J].
Chen, Yong ;
Wen, Kaihua ;
Chen, Tianhua ;
Zhang, Xiaojing ;
Armand, Michel ;
Chen, Shimou .
ENERGY STORAGE MATERIALS, 2020, 31 :401-433
[8]   Garnet Electrolyte Surface Degradation and Recovery [J].
Cheng, Lei ;
Liu, Miao ;
Mehta, Apurva ;
Xin, Huolin ;
Lin, Feng ;
Persson, Kristin ;
Chen, Guoying ;
Crumlin, Ethan J. ;
Doeff, Marca .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (12) :7244-+
[9]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473