Bayesian analysis of vector-autoregressive models with noninformative priors

被引:10
|
作者
Sun, D [1 ]
Ni, S [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
关键词
jeffreys prior; Markov chain Monte Carlo; loss function; multi-goods consumption;
D O I
10.1016/s0378-3758(03)00116-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the properties of Bayes estimators of vector autoregression (VAR) coefficients and the covariance matrix under two commonly employed loss functions. We point out that the posterior mean of the variances of the VAR errors under the Jeffreys prior is likely to have an over-estimation bias. Our Bayesian computation results indicate that estimates using the constant prior on the VAR regression coefficients and the reference prior of Yang and Berger (Ann. Statist. 22 (1994) 1195) on the covariance matrix dominate the constant-Jeffreys prior estimates commonly used in applications of VAR models in macroeconomics. We also estimate a VAR model of consumption growth using both constant-reference and constant-Jeffreys priors. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 50 条