On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models

被引:54
作者
Berselli, Luigi C. [1 ]
Bisconti, Luca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
[2] Univ Florence, Dipartimento Matemat Applicata G Sansone, I-50139 Florence, Italy
关键词
Navier-Stokes and Euler; Voigt models; Singular limit; Parameter dependence; GLOBAL WELL-POSEDNESS; PERTURBATION-THEORY; SINGULAR LIMITS; FLUID; ALPHA; REGULARIZATION; VISCOSITY; EQUATIONS;
D O I
10.1016/j.na.2011.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler-Voigt equations and the Navier-Stokes-Voigt equations, which are obtained by an inviscid alpha-regularization from the corresponding equations. The main result we show is the structural stability of the system in terms of the variations of both viscosity and regularization parameters. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]  
Berselli LC, 2006, SCI COMPUT, P1
[4]  
BERSELLI LC, 2009, ANN I H POI IN PRESS
[5]   On the Clark-α model of turbulence:: global regularity and long-time dynamics [J].
Cao, C ;
Holm, DD ;
Titi, ES .
JOURNAL OF TURBULENCE, 2005, 6 (20) :1-11
[6]  
Cao YP, 2006, COMMUN MATH SCI, V4, P823
[7]   On a Leray-α model of turbulence [J].
Cheskidov, A ;
Holm, DD ;
Olson, E ;
Titi, ES .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2055) :629-649
[8]  
da Veiga HB, 2010, ADV MATH FLUID MECH, P113
[9]   A review on some contributions to perturbation theory, singular limits and well-posedness [J].
da Veiga, H. Beirao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :271-292
[10]   PERTURBATION THEOREMS FOR LINEAR HYPERBOLIC MIXED PROBLEMS AND APPLICATIONS TO THE COMPRESSIBLE EULER EQUATIONS [J].
DAVEIGA, HB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (02) :221-259