On conic-line arrangements with nodes, tacnodes, and ordinary triple points

被引:10
作者
Dimca, Alexandru [1 ,2 ]
Pokora, Piotr [3 ]
机构
[1] Univ Cote dAzur, LJAD, CNRS, Nice, France
[2] Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
[3] Pedag Univ Krakow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
关键词
Conic-line arrangements; Nodes; Tacnodes; Freeness; Nearly freeness; SEMICONTINUITY; CONFIGURATIONS; FREENESS; NUMBER;
D O I
10.1007/s10801-022-01116-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study conic-line arrangements having nodes, tacnodes, and ordinary triple points as singularities. We provide combinatorial constraints on such arrangements, and we give the complete classification of free arrangements in this class.
引用
收藏
页码:403 / 424
页数:22
相关论文
共 17 条
[1]   Logarithmic derivations associated to line arrangements [J].
Burity, Ricardo ;
Tohaneanu, Stefan O. .
JOURNAL OF ALGEBRA, 2021, 581 :327-352
[2]   Log canonical thresholds on hypersurfaces [J].
Cheltsov, IA .
SBORNIK MATHEMATICS, 2001, 192 (7-8) :1241-1257
[3]  
Decker W, 2018, SINGULAR 4 1 1 COMPU
[4]  
Dimca A., 2014, J ECOLE POLYTECHNIQU, V1, P247
[5]  
Dimca A., ARXIV210804004
[6]   Free and Nearly Free Curves vs. Rational Cuspidal Plane Curves [J].
Dimca, Alexandru ;
Sticlaru, Gabriel .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2018, 54 (01) :163-179
[7]   Freeness versus maximal global Tjurina number for plane curves [J].
Dimca, Alexandru .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 163 (01) :161-172
[8]   Application of the theory of the discriminant to highly singular plane curves [J].
Du Plessis, AA ;
Wall, CTC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :259-266
[9]  
Kulikov V. S., 1998, CAMBRIDGE TRACTS MAT, V132
[10]   Logarithmic orbifold Euler numbers of surfaces with applications [J].
Langer, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :358-396