Evaluation of Pt-Au/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell

被引:38
作者
Beltran-Gastelum, M. [1 ]
Salazar-Gastelum, M. I. [1 ]
Felix-Navarro, R. M. [1 ]
Perez-Sicairos, S. [1 ]
Reynoso-Soto, E. A. [1 ]
Lin, S. W. [1 ]
Flores-Hernandez, J. R. [2 ]
Romero-Castanon, T. [2 ]
Albarran-Sanchez, I. L. [2 ]
Paraguay-Delgado, F. [3 ]
机构
[1] Inst Tecnol Tijuana, Ctr Grad & Invest Quim, Blvd Alberto Limon Padilla S-N Col Otay Tecnol, Tijuana 22510, BC, Mexico
[2] Inst Invest Elect, Ave Reforma 113 Col Palmira, Cuernavaca 62490, Morelos, Mexico
[3] Ctr Invest Mat Avanzados SC CIMAV, Ave Miguel Cervantes 120 Complejo Ind, Chihuahua 31136, Chih, Mexico
关键词
PEMFC; MWCNT; Oxygen reduction reaction; Bimetallic; Nanomaterial; Electrocatalyst; GAS-DIFFUSION ELECTRODES; OXYGEN REDUCTION; CATALYST LAYER; BIMETALLIC NANOPARTICLES; PLATINUM; ENERGY; OPTIMIZATION; SUPPORT; DEPOSITION; EFFICIENCY;
D O I
10.1016/j.energy.2016.04.132
中图分类号
O414.1 [热力学];
学科分类号
摘要
A comparative study between Pt-Au/MWCNT and Pt/C (commercial) as cathodic electrocatalyst of H-2/O-2 fuel cell is performed. Pt-Au/MWCNT is synthesized using the reverse microemulsion method and this procedure is scaled-up in order to prepare membrane-electrode assemblies for fuel cells with an active area of 9 cm(2). Those electrocatalysts are characterized by both physicochemical techniques and electrochemical measurements to evaluate their catalytic activity for ORR (Oxygen Reduction Reaction). In the half-cell study, Pt-Au/MWCNT show higher kinetic current density as cathodic electrocatalyst compared with Pt/C. Likewise, in a fuel cell hardware the maximum power density is significantly higher for Pt-Au/MWCNT cathode (625 mW cm(-2) at 0.426 V) when compared with Pt/C anode (355 mW cm(-2) at 0.499 V). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 65 条
[11]  
Carton JG, 2016, ENERGY
[12]   Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method [J].
Chaparro, A. M. ;
Benitez, R. ;
Gubler, L. ;
Scherer, G. G. ;
Daza, L. .
JOURNAL OF POWER SOURCES, 2007, 169 (01) :77-84
[13]   PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell [J].
Chen, Maojun ;
Lou, Baiyang ;
Ni, Zhongjin ;
Xu, Bing .
ELECTROCHIMICA ACTA, 2015, 165 :105-109
[14]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[15]  
Dell R., 1975, Appl. Energy, V1, P279, DOI [10.1016/0306-2619(75)90029-x, DOI 10.1016/0306-2619(75)90029-X]
[16]   Proton exchange membrane fuel cells with nanoengineered AuPt catalysts at the cathode [J].
Fang, Bin ;
Wanjala, Bridgid N. ;
Hu, Xiang ;
Last, Jordan ;
Loukrakpam, Rameshwori ;
Yin, Jun ;
Luo, Jin ;
Zhong, Chuan-Jian .
JOURNAL OF POWER SOURCES, 2011, 196 (02) :659-665
[17]   Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis [J].
Felix-Navarro, R. M. ;
Beltran-Gastelum, M. ;
Salazar-Gastelum, M. I. ;
Silva-Carrillo, C. ;
Reynoso-Soto, E. A. ;
Perez-Sicairos, S. ;
Lin, S. W. ;
Paraguay-Delgado, F. ;
Alonso-Nunez, G. .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (08)
[18]   The Impact of Platinum Reduction on Oxygen Transport in Proton Exchange Membrane Fuel Cells [J].
Fukuyama, Yosuke ;
Shiomi, Takeshi ;
Kotaka, Toshikazu ;
Tabuchi, Yuichiro .
ELECTROCHIMICA ACTA, 2014, 117 :367-378
[19]   Overcoming electrical and mechanical challenges of continuous wave laser processing for Ni-Cu plated solar cells [J].
Geisler, C. ;
Hoerdt, W. ;
Kluska, S. ;
Mondon, A. ;
Hopman, S. ;
Glatthaar, M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 133 :48-55
[20]   Optimization of hydro energy storage plants by using differential evolution algorithm [J].
Glotic, Arnel ;
Glotic, Adnan ;
Kitak, Peter ;
Pihler, Joze ;
Ticar, Igor .
ENERGY, 2014, 77 :97-107