Deep Learning based End-to-End Rolling Bearing Fault Diagnosis

被引:2
|
作者
Li, Yongjie [1 ]
Qiu, Bohua [1 ]
Wei, Muheng [1 ]
Sun, Wenqiushi [1 ]
Liu, Xueliang [1 ]
机构
[1] CSSC Syst Engn Res Inst, Ocean Intelligent Technol Innovat Ctr, Beijing, Peoples R China
关键词
Deep Learning; one-dimensional CNN; GRU; LSTM; Fault diagnosis;
D O I
10.1109/phm-qingdao46334.2019.8942956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings play an important part in rotating machinery. As they work in complex conditions, faults will occur sometimes. Therefore, it is necessary to detect the faults early. Traditional bearing fault diagnosis methods are often based on mechanism analysis and feature selection, and the process is relatively complicated. Deep learning methods, however, have the ability to extract and select features automatically, which greatly reduces the workload. In recent years, deep learning-based methods have been successfully used in many fields, such as computer vision, voice recognition, medical diagnosis. In this paper, the end-to-end fault methods based on deep learning are proposed. The Long Short-Term Memory (LSTM) network, Gated Recurrent Unit (GRU) network and One-Dimensional Convolutional Neural Network (1D CNN) are used to build the deep learning network architecture respectively. A methodology is proposed for rolling bearing fault diagnosis, including data preprocessing, network modeling, training, validation and testing. Test bench data is used for fault diagnosis and the results show that deep learning based end-to-end methods are effective for the fault diagnosis of rolling bearings and that the model based on 1D CNN has the best performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Deep Learning-Based End-To-End CT Reconstruction Method
    Lu, K.
    Ren, L.
    Yin, F.
    MEDICAL PHYSICS, 2020, 47 (06) : E507 - E508
  • [42] Optical Fiber Communication Systems Based on End-to-End Deep Learning
    Karanov, Boris
    Chagnon, Mathieu
    Aref, Vahid
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [43] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [44] A New End-to-end Modulation Recognition Algorithm Based on Deep Learning
    Gao, Jingpeng
    Wang, Fu
    Gao, Lu
    Wang, Xu
    PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020), 2020, : 346 - 350
  • [45] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang Z.-Q.
    Qu Z.-W.
    Zhang J.
    Zhang Y.-X.
    Tian R.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (09): : 1711 - 1719
  • [46] End-to-end Lithography Modeling Based on Process Parameters and Deep Learning
    Lin, Zebang
    Ren, Kun
    Gao, Dawei
    Wu, Yongyu
    Xu, Shibin
    Lu, Miaomiao
    2024 INTERNATIONAL SYMPOSIUM OF ELECTRONICS DESIGN AUTOMATION, ISEDA 2024, 2024, : 524 - 529
  • [47] An End-to-End Robotic Visual Localization Algorithm Based on Deep Learning
    Wang, Hongcheng
    Chen, Niansheng
    Fan, Guangyu
    Yang, Dingyu
    Rao, Lei
    Cheng, Songlin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [48] An End-to-End Robotic Visual Localization Algorithm Based on Deep Learning
    Chen, Niansheng
    Wang, Hongcheng
    Fan, Guangyu
    Yang, Dingyu
    Rao, Lei
    JOURNAL OF SENSORS, 2023, 2023
  • [49] End-to-end driving model based on deep learning and attention mechanism
    Zhu, Wuqiang
    Lu, Yang
    Zhang, Yongliang
    Wei, Xing
    Wei, Zhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3337 - 3348
  • [50] An End-to-end Deep Clustering Method with Consistency and Complementarity Attention Mechanism for Multisensor Fault Diagnosis
    Wu, Zhangjun
    Fang, Gang
    Wang, Yifei
    Xu, Renli
    APPLIED SOFT COMPUTING, 2024, 158