Deep Learning based End-to-End Rolling Bearing Fault Diagnosis

被引:2
|
作者
Li, Yongjie [1 ]
Qiu, Bohua [1 ]
Wei, Muheng [1 ]
Sun, Wenqiushi [1 ]
Liu, Xueliang [1 ]
机构
[1] CSSC Syst Engn Res Inst, Ocean Intelligent Technol Innovat Ctr, Beijing, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO) | 2019年
关键词
Deep Learning; one-dimensional CNN; GRU; LSTM; Fault diagnosis;
D O I
10.1109/phm-qingdao46334.2019.8942956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings play an important part in rotating machinery. As they work in complex conditions, faults will occur sometimes. Therefore, it is necessary to detect the faults early. Traditional bearing fault diagnosis methods are often based on mechanism analysis and feature selection, and the process is relatively complicated. Deep learning methods, however, have the ability to extract and select features automatically, which greatly reduces the workload. In recent years, deep learning-based methods have been successfully used in many fields, such as computer vision, voice recognition, medical diagnosis. In this paper, the end-to-end fault methods based on deep learning are proposed. The Long Short-Term Memory (LSTM) network, Gated Recurrent Unit (GRU) network and One-Dimensional Convolutional Neural Network (1D CNN) are used to build the deep learning network architecture respectively. A methodology is proposed for rolling bearing fault diagnosis, including data preprocessing, network modeling, training, validation and testing. Test bench data is used for fault diagnosis and the results show that deep learning based end-to-end methods are effective for the fault diagnosis of rolling bearings and that the model based on 1D CNN has the best performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Yuling Tian
    Xiangyu Liu
    TsinghuaScienceandTechnology, 2019, 24 (06) : 750 - 762
  • [32] An end-to-end denoising autoencoder-based deep neural network approach for fault diagnosis of analog circuit
    Yang, Yueyi
    Wang, Lide
    Chen, Huang
    Wang, Chong
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 107 (03) : 605 - 616
  • [33] End-to-end Lithography Modeling Based on Process Parameters and Deep Learning
    Lin, Zebang
    Ren, Kun
    Gao, Dawei
    Wu, Yongyu
    Xu, Shibin
    Lu, Miaomiao
    2024 INTERNATIONAL SYMPOSIUM OF ELECTRONICS DESIGN AUTOMATION, ISEDA 2024, 2024, : 524 - 529
  • [34] Optical Fiber Communication Systems Based on End-to-End Deep Learning
    Karanov, Boris
    Chagnon, Mathieu
    Aref, Vahid
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [35] End-to-End Structural analysis in civil engineering based on deep learning
    Wang, Chen
    Song, Ling-han
    Fan, Jian-sheng
    AUTOMATION IN CONSTRUCTION, 2022, 138
  • [36] A Deep Learning Method for Rolling Bearing Fault Diagnosis through Heterogeneous Data
    Zhou, Wei
    Hou, Yandong
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1214 - 1219
  • [37] A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures
    Xiong, Shoucong
    Zhou, Hongdi
    He, Shuai
    Zhang, Leilei
    Xia, Qi
    Xuan, Jianping
    Shi, Tielin
    SENSORS, 2020, 20 (17) : 1 - 26
  • [38] An end-to-end framework for remaining useful life prediction of rolling bearing based on feature pre-extraction mechanism and deep adaptive transformer model
    Su, Xuanyuan
    Liu, Hongmei
    Tao, Laifa
    Lu, Chen
    Suo, Mingliang
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 161 (161)
  • [39] An End-to-End Robotic Visual Localization Algorithm Based on Deep Learning
    Wang, Hongcheng
    Chen, Niansheng
    Fan, Guangyu
    Yang, Dingyu
    Rao, Lei
    Cheng, Songlin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [40] A Deep Learning Method for Rolling Bearing Fault Diagnosis Based on Attention Mechanism and Graham Angle Field
    Lu, Jingyu
    Wang, Kai
    Chen, Chen
    Ji, Weixi
    SENSORS, 2023, 23 (12)