Deep Learning based End-to-End Rolling Bearing Fault Diagnosis

被引:2
|
作者
Li, Yongjie [1 ]
Qiu, Bohua [1 ]
Wei, Muheng [1 ]
Sun, Wenqiushi [1 ]
Liu, Xueliang [1 ]
机构
[1] CSSC Syst Engn Res Inst, Ocean Intelligent Technol Innovat Ctr, Beijing, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO) | 2019年
关键词
Deep Learning; one-dimensional CNN; GRU; LSTM; Fault diagnosis;
D O I
10.1109/phm-qingdao46334.2019.8942956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings play an important part in rotating machinery. As they work in complex conditions, faults will occur sometimes. Therefore, it is necessary to detect the faults early. Traditional bearing fault diagnosis methods are often based on mechanism analysis and feature selection, and the process is relatively complicated. Deep learning methods, however, have the ability to extract and select features automatically, which greatly reduces the workload. In recent years, deep learning-based methods have been successfully used in many fields, such as computer vision, voice recognition, medical diagnosis. In this paper, the end-to-end fault methods based on deep learning are proposed. The Long Short-Term Memory (LSTM) network, Gated Recurrent Unit (GRU) network and One-Dimensional Convolutional Neural Network (1D CNN) are used to build the deep learning network architecture respectively. A methodology is proposed for rolling bearing fault diagnosis, including data preprocessing, network modeling, training, validation and testing. Test bench data is used for fault diagnosis and the results show that deep learning based end-to-end methods are effective for the fault diagnosis of rolling bearings and that the model based on 1D CNN has the best performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    SIGNAL PROCESSING, 2019, 161 : 136 - 154
  • [22] Masked Autoencoder via End-to-End Zero-Shot Learning for Fault Diagnosis of Unseen Classes
    Long, Jianyu
    Lin, Jing
    Jiang, Lingli
    Yang, Zhe
    Guo, Jianwen
    Yin, Tao
    Li, Chuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [23] Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion
    Ma, Jianpeng
    Li, Chengwei
    Zhang, Guangzhu
    SYMMETRY-BASEL, 2022, 14 (01):
  • [24] A Deep Ensemble Learning Model for Rolling Bearing Fault Diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Li, Zhenning
    Liu, Yunpeng
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 133 - 136
  • [25] Rolling Bearing Fault Diagnosis Using Deep Learning Network
    Tang, Shenghao
    Yuan, Yuqiu
    Lu, Li
    Li, Shuang
    Shen, Changqing
    Zhu, Zhongkui
    ADVANCED MANUFACTURING AND AUTOMATION VII, 2018, 451 : 357 - 365
  • [26] End-to-End Deep Learning for Robotic Following
    Pierre, John M.
    ICMSCE 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEMS AND CONTROL ENGINEERING, 2015, : 77 - 85
  • [27] Fault diagnosis of motor bearing based on deep learning
    Jian, Yifan
    Qing, Xianguo
    He, Liang
    Zhao, Yang
    Qi, Xiao
    Du, Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (09)
  • [28] Motor Bearing Fault Diagnosis Based on Deep Learning
    Zhang, Wei
    Hu, Yong
    Zeng, Deliang
    Luo, Wei
    Li, Gengda
    Liu, Miao
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 8 - 14
  • [29] An end-to-end denoising autoencoder-based deep neural network approach for fault diagnosis of analog circuit
    Yueyi Yang
    Lide Wang
    Huang Chen
    Chong Wang
    Analog Integrated Circuits and Signal Processing, 2021, 107 : 605 - 616
  • [30] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Tian, Yuling
    Liu, Xiangyu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 750 - 762