THE DEFOCUSING ENERGY-SUPERCRITICAL CUBIC NONLINEAR WAVE EQUATION IN DIMENSION FIVE

被引:9
作者
Bulut, Aynur [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; RADIAL SOLUTIONS; BLOW-UP; SCATTERING; REGULARITY; BOUNDS;
D O I
10.1090/tran/6068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the energy-supercritical nonlinear wave equation u(tt)-Delta u + broken vertical bar u broken vertical bar(2)u = 0 with defocusing cubic nonlinearity in dimension d = 5 with no radial assumption on the initial data. We prove that a uniform-in-time a priori bound on the critical norm implies that solutions exist globally in time and scatter at infinity in both time directions. Together with our earlier works in dimensions d >= 6 with general data and dimension d = 5 with radial data, the present work completes the study of global well-posedness and scattering in the energy-supercritical regime for the cubic nonlinearity under the assumption of uniform-in-time control over the critical norm.
引用
收藏
页码:6017 / 6061
页数:45
相关论文
共 34 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]  
BULUT A, 2012, RECENT ADV HARMONIC, V0581, P00001
[3]   The radial defocusing energy-supercritical cubic nonlinear wave equation in R1+5 [J].
Bulut, Aynur .
NONLINEARITY, 2014, 27 (08) :1859-1877
[4]   Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation [J].
Bulut, Aynur .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1609-1660
[5]  
Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
[6]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[7]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[8]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[9]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[10]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774