Stochastic stability of coupled oscillators

被引:4
|
作者
Bobryk, Roman V. [1 ,2 ]
机构
[1] Jan Kochanowski Univ Humanities & Sci, Inst Math, PL-25406 Kielce, Poland
[2] Natl Acad Sci Ukraine, Inst APMM, UA-79060 Lvov, Ukraine
关键词
coupled oscillators; mean square stability; parametric resonance; eigenvalue problem;
D O I
10.1016/j.amc.2007.08.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple and combination resonances in coupled oscillators under a random parametric excitation are studied. An efficient numerical method for obtaining the regions of mean square stability is proposed. Based on the method, stability diagrams for different values of the excitation parameter and for four form of the coupling parameters are presented. It is found that the random excitation can have a stabilizing effect under certain conditions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:544 / 550
页数:7
相关论文
共 50 条
  • [1] Stochastic stability of two coupled oscillators in resonance
    Namachchivaya, NS
    Ramakrishnan, N
    Van Roessel, HJ
    Vedula, L
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 167 - 177
  • [2] Stochastic stability of coupled oscillators in internal resonance
    Ariaratnam, ST
    Abdelrahman, NM
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 97 - 110
  • [3] Stochastic stability of coupled oscillators in resonance: A perturbation approach
    Namachchivaya, N. Sri
    Van Roessel, H.J.
    Journal of Applied Mechanics, Transactions ASME, 2004, 71 (06): : 759 - 768
  • [4] Stochastic stability of coupled oscillators in resonance: A perturbation approach
    Namachchivaya, NS
    Van Roessel, HJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (06): : 759 - 768
  • [5] ALMOST-SURE STOCHASTIC STABILITY OF COUPLED NONLINEAR OSCILLATORS
    ARIARATNAM, ST
    XIE, WC
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (02) : 197 - 204
  • [6] MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY FOR TWO COUPLED OSCILLATORS
    Kozic, Predrag
    Janevski, Goran
    Pavlovic, Ratko
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2009, 4 (10) : 1689 - 1701
  • [7] Global exponential stability for stochastic networks of coupled oscillators with variable delay
    Li, Wenxue
    Wang, Shihua
    Su, Huan
    Wang, Ke
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 877 - 888
  • [8] Stochastic Stability of Coupled Oscillators With One Asymptotically Stable and One Critical Mode
    Namachchivaya, N. Sri
    Vedula, Lalit
    Onu, Kristjan
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2011, 78 (03):
  • [9] STOCHASTIC STABILITY OF NONLINEAR OSCILLATORS
    KLOSEKDYGAS, MM
    MATKOWSKY, BJ
    SCHUSS, Z
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (05) : 1115 - 1127
  • [10] A Stochastic Approach to the Synchronization of Coupled Oscillators
    Biccari, Umberto
    Zuazua, Enrique
    FRONTIERS IN ENERGY RESEARCH, 2020, 8