Gradient estimates and ergodicity for SDEs driven by multiplicative Levy noises via coupling
被引:16
作者:
Liang, Mingjie
论文数: 0引用数: 0
h-index: 0
机构:
Sanming Univ, Coll Informat Engn, Sanming 365004, Peoples R China
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R ChinaSanming Univ, Coll Informat Engn, Sanming 365004, Peoples R China
Liang, Mingjie
[1
,2
]
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R China
Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Peoples R ChinaSanming Univ, Coll Informat Engn, Sanming 365004, Peoples R China
Wang, Jian
[2
,3
]
机构:
[1] Sanming Univ, Coll Informat Engn, Sanming 365004, Peoples R China
[2] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R China
[3] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Peoples R China
Stochastic differential equation;
Multiplicative pure jump Levy noises;
Coupling;
Gradient estimate;
Ergodicity;
DIFFERENTIAL-EQUATIONS DRIVEN;
MULTIDIMENSIONAL DIFFUSIONS;
EXPONENTIAL ERGODICITY;
PATHWISE UNIQUENESS;
D O I:
10.1016/j.spa.2019.09.001
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider SDEs driven by multiplicative pure jump Levy noises, where Levy processes are not necessarily comparable to alpha-stable-like processes. By assuming that the SDE has a unique strong solution, we obtain gradient estimates of the associated semigroup when the drift term is locally Holder continuous, and we establish the ergodicity of the process both in the L-1-Wasserstein distance and the total variation, when the coefficients are dissipative for large distances. The proof is based on a new explicit Markov coupling for SDEs driven by multiplicative pure jump Levy noises, which has been open for a long time in this area. (C) 2019 Elsevier B.V. All rights reserved.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
Luo, Dejun
;
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Fujian, Peoples R China
Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Fujian, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Luo, Dejun
;
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
Luo, Dejun
;
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Fujian, Peoples R China
Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Fujian, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
Luo, Dejun
;
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China