Local filtering of noisy nonlinear time series

被引:5
作者
Walker, DM [1 ]
机构
[1] Univ Western Australia, Dept Math, Ctr Appl Dynam & Optimizat, Nedlands, WA 6907, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0375-9601(98)00755-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the use of different local nonlinear modelling and nonlinear filtering techniques to clean a noisy time series obtained from a deterministic chaotic systems. The methods are tested on data from the Ikeda map and the Mackey-Glass delay differential equation. We test the results of the filtered times series using the correlation dimension statistic and SNR gain. In all cases we see that local filtering has produced a new time series which is more consistent with the original clean time series. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 24 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[3]  
[Anonymous], 1982, MATH SCI ENG
[4]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[5]   FINITE-SAMPLE CORRECTIONS TO ENTROPY AND DIMENSION ESTIMATES [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1988, 128 (6-7) :369-373
[6]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[7]  
Grassberger Peter, 1993, Chaos, V3, P127, DOI 10.1063/1.165979
[8]   SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT [J].
GREBOGI, C ;
HAMMEL, SM ;
YORKE, JA ;
SAUER, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1527-1530
[9]   A NOISE-REDUCTION METHOD FOR CHAOTIC SYSTEMS [J].
HAMMEL, SM .
PHYSICS LETTERS A, 1990, 148 (8-9) :421-428
[10]  
IKEGUCHI T, 1995, T IEICE FUNDAMENTA E, V75