Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator

被引:847
作者
Zhang, J. [1 ,2 ,3 ]
Pagano, G. [1 ,2 ,3 ]
Hess, P. W. [1 ,2 ,3 ]
Kyprianidis, A. [1 ,2 ,3 ]
Ecker, P. B. [1 ,2 ,3 ]
Kaplan, H. [1 ,2 ,3 ]
Gorshkov, A. V. [1 ,2 ,3 ]
Gong, Z. -X. [1 ,2 ,3 ,5 ]
Monroe, C. [1 ,2 ,3 ,4 ]
机构
[1] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, Dept Phys, College Pk, MD 20742 USA
[3] Natl Inst Stand & Technol, College Pk, MD 20742 USA
[4] IonQ Inc, College Pk, MD 20740 USA
[5] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
PROPAGATION; SYSTEMS; IONS;
D O I
10.1038/nature24654
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems(1,2). As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems(3). Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply(4). The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.
引用
收藏
页码:601 / +
页数:9
相关论文
共 43 条
[1]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[2]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[3]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[4]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[5]   Arbitrarily accurate composite pulse sequences [J].
Brown, KR ;
Harrow, AW ;
Chuang, IL .
PHYSICAL REVIEW A, 2004, 70 (05) :052318-1
[6]   Dynamical phase transitions in long-range Hamiltonian systems and Tsallis distributions with a time-dependent index [J].
Campa, Alessandro ;
Chavanis, Pierre-Henri ;
Giansanti, Andrea ;
Morelli, Gianluca .
PHYSICAL REVIEW E, 2008, 78 (04)
[7]   Cancer as a dynamical phase transition [J].
Davies, Paul C. W. ;
Demetrius, Lloyd ;
Tuszynski, Jack A. .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2011, 8
[8]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[9]  
Eisert J, 2015, NAT PHYS, V11, P124, DOI [10.1038/nphys3215, 10.1038/NPHYS3215]
[10]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488