Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry

被引:59
作者
Ximendes, Erving [1 ,2 ]
Marin, Riccardo [1 ]
Dias Carlos, Luis [3 ]
Jaque, Daniel [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Mat, NanoBIG, C Francisco Tomas & Valiente 7, Madrid 28049, Spain
[2] Inst Ramon y Cajal Invest Sanitaria IRYCIS, NanoBIG, Ctra Colmenar Km 9-100, Madrid 28034, Spain
[3] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Phys, Phantom G, P-3810 Aveiro, Portugal
关键词
Compendex;
D O I
10.1038/s41377-022-00932-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thermal resolution (also referred to as temperature uncertainty) establishes the minimum discernible temperature change sensed by luminescent thermometers and is a key figure of merit to rank them. Much has been done to minimize its value via probe optimization and correction of readout artifacts, but little effort was put into a better exploitation of calibration datasets. In this context, this work aims at providing a new perspective on the definition of luminescence-based thermometric parameters using dimensionality reduction techniques that emerged in the last years. The application of linear (Principal Component Analysis) and non-linear (t-distributed Stochastic Neighbor Embedding) transformations to the calibration datasets obtained from rare-earth nanoparticles and semiconductor nanocrystals resulted in an improvement in thermal resolution compared to the more classical intensity-based and ratiometric approaches. This, in turn, enabled precise monitoring of temperature changes smaller than 0.1 degrees C. The methods here presented allow choosing superior thermometric parameters compared to the more classical ones, pushing the performance of luminescent thermometers close to the experimentally achievable limits.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Near-Infrared Spectroscopy in Bio-Applications [J].
Bec, Krzysztof B. ;
Grabska, Justyna ;
Huck, Christian W. .
MOLECULES, 2020, 25 (12)
[2]   Standardizing luminescence nanothermometry for biomedical applications [J].
Bednarkiewicz, Artur ;
Marciniak, Lukasz ;
Carlos, Luis D. ;
Jaque, Daniel .
NANOSCALE, 2020, 12 (27) :14405-14421
[3]   Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry [J].
Brites, Carlos D. S. ;
Balabhadra, Sangeetha ;
Carlos, Luis D. .
ADVANCED OPTICAL MATERIALS, 2019, 7 (05)
[4]   Acquisition of kHz-frequency two-dimensional surface temperature field using phosphor thermometry and proper orthogonal decomposition assisted long short-term memory neural networks [J].
Cai, Tao ;
Deng, Zhiwen ;
Park, Yoonseong ;
Mohammadshahi, Shabnam ;
Liu, Yingzheng ;
Kim, Kyung Chun .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 165
[5]   Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli [J].
Casar, Jason R. ;
McLellan, Claire A. ;
Siefe, Chris ;
Dionne, Jennifer A. .
ACS PHOTONICS, 2021, 8 (01) :3-17
[6]   Small and Bright Lithium-Based Upconverting Nanoparticles [J].
Cheng, Ting ;
Marin, Riccardo ;
Skripka, Artiom ;
Vetrone, Fiorenzo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (40) :12890-12899
[7]   Collinearity: a review of methods to deal with it and a simulation study evaluating their performance [J].
Dormann, Carsten F. ;
Elith, Jane ;
Bacher, Sven ;
Buchmann, Carsten ;
Carl, Gudrun ;
Carre, Gabriel ;
Garcia Marquez, Jaime R. ;
Gruber, Bernd ;
Lafourcade, Bruno ;
Leitao, Pedro J. ;
Muenkemueller, Tamara ;
McClean, Colin ;
Osborne, Patrick E. ;
Reineking, Bjoern ;
Schroeder, Boris ;
Skidmore, Andrew K. ;
Zurell, Damaris ;
Lautenbach, Sven .
ECOGRAPHY, 2013, 36 (01) :27-46
[8]   Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications [J].
Escudero, Alberto ;
Becerro, Ana I. ;
Carrillo-Carrion, Carolina ;
Nunez, Nuria O. ;
Zyuzin, Mikhail V. ;
Laguna, Mariano ;
Gonzalez-Mancebo, Daniel ;
Ocana, Manuel ;
Parak, Wolfgang J. .
NANOPHOTONICS, 2017, 6 (05) :881-921
[9]  
Gwelo AS, 2019, Oradea Journal of Business and Economics, V4, P79, DOI [10.47535/1991ojbe062, DOI 10.47535/1991OJBE062, 10.47535/1991ojbe062]
[10]   I-vector Extraction for Speaker Recognition Based on Dimensionality Reduction [J].
Ibrahim, Noor Salwani ;
Ramli, Dzati Athiar .
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 :1534-1540