Covariance systems

被引:5
作者
Naudts, J [1 ]
Kuna, M [1 ]
机构
[1] Univ Instelling Antwerp, Dept Natuurkunde, B-2610 Antwerp, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 43期
关键词
D O I
10.1088/0305-4470/34/43/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce new definitions of states and representations of covariance systems. The GNS-construction is generalized in this context. It associates a representation with each state of the covariance system. Next, the states are extended to the states of an appropriate covariance algebra. Two applications are given. We describe a non-relativistic quantum particle and give a simple description of the quantum spacetime model introduced by Doplicher et al.
引用
收藏
页码:9265 / 9280
页数:16
相关论文
共 22 条
[1]   ON UNITARY RAY REPRESENTATIONS OF CONTINUOUS GROUPS [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1954, 59 (01) :1-46
[2]  
Bratteli O., 1997, OPERATOR ALGEBRAS QU, V1
[3]   REPRESENTATIONS OF TWISTED GROUP ALGEBRAS [J].
BUSBY, RC ;
SMITH, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (02) :503-+
[4]   SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
PHYSICS LETTERS B, 1994, 331 (1-2) :39-44
[5]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[6]  
Doplicher S., 1966, COMMUN MATH PHYS, V3, P1
[7]   GALILEAN INVARIANT LEE MODEL FOR ALL SPINS AND PARITIES [J].
HAGEN, CR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 21 (03) :219-&
[8]   BARGMANN-WIGNER METHOD IN GALILEAN RELATIVITY [J].
HAGEN, CR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :97-&
[9]  
Landsman N. P., 1990, Reviews in Mathematical Physics, V2, P73, DOI 10.1142/S0129055X90000041
[10]  
Landsman N. P., 1990, Reviews in Mathematical Physics, V2, P45, DOI 10.1142/S0129055X9000003X