Polar solutions with tensorial connection of the spinor equation

被引:13
作者
Fabbri, Luca [1 ]
机构
[1] Univ Genoa, DIME, Sez Metodi & Modelli Matemat, Via AllOpera Pia 15, I-16145 Genoa, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 03期
关键词
D O I
10.1140/epjc/s10052-019-6709-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Dirac field equations are studied for spinor fields without any external interaction and when they are considered on a background having a tensorial connection with a specific non-vanishing structure some solution can be found in polar form displaying a square-integrable localized behaviour.
引用
收藏
页数:7
相关论文
共 11 条
[1]   Classification of singular spinor fields and other mass dimension one fermions [J].
Cavalcanti, R. T. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (14)
[2]   Spinor Fields, Singular Structures, Charge Conjugation, ELKO and Neutrino Masses [J].
Fabbri, Luca .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (01)
[3]   Torsion axial vector and Yvon-Takabayashi angle: zitterbewegung, chirality and all that [J].
Fabbri, Luca ;
da Rocha, Roldao .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (03)
[4]   General Dynamics of Spinors [J].
Fabbri, Luca .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (04) :2901-2920
[8]  
Gasperini M, 2017, UNITEXT PHYS, P1, DOI 10.1007/978-3-319-49682-5
[9]   REAL SPINOR FIELDS [J].
HESTENES, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :798-+
[10]  
Lounesto P., 2001, CLIFFORD ALGEBRAS SP, DOI [10.1017/cbo9780511526022, 10.1017/CBO9780511526022]