Data-driven minimum variance control using regulatory closed-loop data based on the FRIT method

被引:1
|
作者
Okada, Shogo [1 ]
Masuda, Shiro [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Syst Design, Tokyo, Japan
关键词
data-driven control; FRIT; minimum variance control;
D O I
10.1002/ecj.12156
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper proposes data-driven minimum variance regulatory control using a Fictitious Reference Iterative Tuning (FRIT) method. Our previous work has extended the original FRIT for reference signal tracking to the case of a stochastic disturbance attenuation problem. However, the method parametrizes the controller by using plant parameters based on a specific controller structure for minimum variance control. The present work uses a linearly parametrized inverse of the controller. Thus, a general parametrization is realized, and the integrator is straightforwardly introduced. An analytical result for the data-driven cost function is also given. A numerical example shows effectiveness of the proposed method.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条
  • [41] Design of a Data-Driven Control System based on the Abnormality using Kernel Density Estimation
    Kinoshita, Takuya
    Yamamoto, Toni
    2018 57TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2018, : 196 - 201
  • [42] A Pattern-moving-Based Data-driven Control Method for a Kind of Industrial Production Processes
    Li, Xiangquan
    Xu, Zhengguang
    Wang, Mushu
    Cui, Jiarui
    Yang, Xu
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 590 - 594
  • [43] The Permanent Magnet Linear Motor Control Based on Data-driven Control Theory
    Cao, Rongmin
    Zhou, Huixing
    Hou, Zhongsheng
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3164 - +
  • [44] Data-Driven Predictive Control for Nonlinear Systems Using Feature Selection
    Reinhardt, Dirk
    Gros, Sebastien
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2576 - 2583
  • [45] Data-driven control of water reservoirs using an emulator of the climate system
    Giuliani, Matteo
    Zaniolo, Marta
    Block, Paul
    Castelletti, Andrea
    IFAC PAPERSONLINE, 2020, 53 (02): : 16531 - 16536
  • [46] Online Data-Driven Control of Nonlinear Systems Using Semidefinite Programming
    Bozza, Augusto
    Martin, Tim
    Cavone, Graziana
    Carli, Raffaele
    Dotoli, Mariagrazia
    Allgoewer, Frank
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3189 - 3194
  • [47] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [48] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [49] Data-Driven Secondary Voltage Control Design using PMU Measurements
    Nascimento, Moises M.
    Bernardo, Raul T.
    Dotta, Daniel
    2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [50] Polynomial regressors based data-driven control for autonomous underwater vehicles
    Hongran Li
    Weiwei Xu
    Heng Zhang
    Jian Zhang
    Yi Liu
    Peer-to-Peer Networking and Applications, 2020, 13 : 1767 - 1775