Bounds on codes based on graph theory

被引:17
作者
El Rouayheb, Salim Y. [1 ]
Georghiades, Costas N. [1 ]
Soljanin, Emina [2 ]
Sprintson, Alex [1 ]
机构
[1] Texas A&M Univ, ECE Dept, College Stn, TX 77843 USA
[2] Bell Labs, Ctr Mat Sci, Murray Hill, NJ 07974 USA
来源
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7 | 2007年
关键词
D O I
10.1109/ISIT.2007.4557151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Let A(q)(n,d) be the maximum order (maximum number of codewords) of a q-ary code of length n and Hamming distance at least d. And let A(n, d, w) that of a binary code of constant weight w. Building on results from algebraic graph theory and Erdos-ko-Rado like theorems in extremal combinatorics, we show how several known bounds on A(q)(n, d) and A (n, d, w) can be easily obtained in a single framework. For instance, both the Hamming and Singleton bounds can derived as an application of a property relating the clique number and the independence number of vertex transitive graphs. Using the same techniques, we also derive some new bounds and present some additional applications.
引用
收藏
页码:1876 / +
页数:2
相关论文
共 16 条
[1]   Upper bounds for constant-weight codes [J].
Agrell, E ;
Vardy, A ;
Zeger, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2373-2395
[2]   The diametric theorem in Hamming spaces - Optimal anticodes [J].
Ahlswede, R ;
Khachatrian, LH .
ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (04) :429-449
[3]   The complete intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :125-136
[4]  
Diestel R, 2006, GRAPH THEORY
[5]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[6]   The Erdos-Ko-Rado theorem for integer sequences [J].
Frankl, P ;
Tokushige, N .
COMBINATORICA, 1999, 19 (01) :55-63
[7]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[8]   A NEW UPPER BOUND FOR ERROR-CORRECTING CODES [J].
JOHNSON, SM .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (03) :203-207
[9]  
Kleitman D. J., 1966, J. Comb. Theory, V2, P209
[10]  
Levenshtein V. I., 1971, Problems of Information Transmission, V7, P281