THE 2-ADIC VALUATIONS OF STIRLING NUMBERS OF THE SECOND KIND

被引:17
作者
Hong, Shaofang [1 ]
Zhao, Jianrong [2 ]
机构
[1] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[2] SW Univ Finance & Econ, Sch Econ Math, Chengdu 610074, Peoples R China
基金
美国国家科学基金会;
关键词
2-Adic valuation; Stirling number of the second kind; partition;
D O I
10.1142/S1793042112500625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the 2-adic valuations of the Stirling numbers S(n, k) of the second kind. We show that v(2)(S(4i, 5)) = v(2)(S(4i + 3, 5)) if and only if i not equivalent to 7 (mod 32). This confirms a conjecture of Amdeberhan, Manna and Moll raised in 2008. We show also that v(2)(S(2(n) + 1, k + 1)) = s(2)(n) - 1 for any positive integer n, where s(2)(n) is the sum of binary digits of n. It proves another conjecture of Amdeberhan, Manna and Moll.
引用
收藏
页码:1057 / 1066
页数:10
相关论文
共 9 条
[1]   The 2-adic valuation of Stirling numbers [J].
Amdeberhan, Tewodros ;
Manna, Dante ;
Moll, Victor H. .
EXPERIMENTAL MATHEMATICS, 2008, 17 (01) :69-82
[2]  
Amdeberhan T, 2009, P AM MATH SOC, V137, P885
[3]  
Becker H. W., 1948, AM J MATH, V170, P385
[4]  
BOROS G, 2001, SCIENTIA A, V7, P37
[5]   DIVISIBILITY BY 2 OF STIRLING-LIKE NUMBERS [J].
DAVIS, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (03) :597-600
[6]   A number-theoretic approach to homotopy exponents of SU(n) [J].
Davis, Donald M. ;
Sun, Zhi-Wei .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (01) :57-69
[7]  
Lengyel T., 1993, FIBONACCI QUART, V31, P427
[8]   ON SOME CONGRUENCES FOR THE BELL NUMBERS AND FOR THE STIRLING NUMBERS [J].
TSUMURA, H .
JOURNAL OF NUMBER THEORY, 1991, 38 (02) :206-211
[9]  
Wannemacker SD, 2005, INTEGERS, V5, pA21