Atmospheric pressure plasma enhanced spatial atomic layer deposition of SnOx as conductive gas diffusion barrier

被引:31
|
作者
Hoffmann, Lukas [1 ]
Theirich, Detlef [1 ]
Schlamm, Daniel [1 ]
Hasselmann, Tim [1 ]
Pack, Sven [1 ]
Brinkmann, Kai Oliver [1 ]
Rogalla, Detlef [2 ]
Peters, Sven [3 ]
Raeupke, Andre [1 ]
Gargouri, Hassan [3 ]
Riedl, Thomas [1 ]
机构
[1] Univ Wuppertal, Inst Elect Devices, Rainer Gruenter Str 21, D-42119 Wuppertal, Germany
[2] Ruhr Univ Bochum, RUBION, Univ Str 150, D-44801 Bochum, Germany
[3] SENTECH Instruments GmbH, Schwarzschildstr 2, D-12489 Berlin, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2018年 / 36卷 / 01期
关键词
OXIDE THIN-FILMS; TIN OXIDE; SOLAR-CELLS; ALUMINUM-OXIDE; TRANSPARENT; ELECTRONICS; PEROVSKITE; PHASE; ALD;
D O I
10.1116/1.5006781
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The authors report the preparation of transparent conductive gas permeation barriers based on thin films of tin oxide (SnOx) grown by spatial atomic layer deposition (ALD) at atmospheric pressure. They present a comparative study using tetrakis(dimethylamino) tin(IV) and various oxidants (atmospheric pressure oxygen plasma, ozone, and water) at process temperatures in the range of 80-165 degrees C. Specifically, for oxygen plasma or ozone as oxidant, the authors confirm self-limited ALD growth with a growth per cycle (GPC) of 0.16 and 0.11 nm for 80 and 150 degrees C, respectively, comparable to the classical vacuum-based ALD of SnOx. On the contrary, for water-based processes the GPC is significantly lower. Very notably, while SnOx grown with water as oxidant shows only a very limited electrical conductivity [10(-3) (Omega cm)(-1)], atmospheric pressure oxygen plasma affords SnOx layers with an electrical conductivity up to 10(2) (Omega cm)(-1). At the same time, these layers are excellent gas permeation barriers with a water vapor transmission rate as low as 7 x 10(-4) gm(-2) day(-1) (at 60 degrees C and 60% rH). ALD growth will be demonstrated at substrate velocities up to 75mm/s (i.e., 4.5m/min), which renders spatial plasma assisted ALD an excellent candidate for the continuous manufacturing of transparent and conductive gas permeation barriers based on SnOx. Published by the AVS.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Nanomanufacturing: High-Throughput, Cost-Effective Deposition of Atomic Scale Thin Films via Atmospheric Pressure Spatial Atomic Layer Deposition
    Musselman, Kevin P.
    Uzoma, Chukwuka F.
    Miller, Michael S.
    CHEMISTRY OF MATERIALS, 2016, 28 (23) : 8443 - 8452
  • [22] TiN diffusion barrier grown by atomic layer deposition method for Cu metallization
    Uhm, J
    Jeon, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (07): : 4657 - 4660
  • [23] The role of plasma in plasma-enhanced atomic layer deposition of crystalline films
    Boris, David R.
    Wheeler, Virginia D.
    Nepal, Neeraj
    Qadri, Syed B.
    Walton, Scott G.
    Eddy, Charles R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (04):
  • [24] Highly Conformal Amorphous W-Si-N Thin Films by Plasma-Enhanced Atomic Layer Deposition as a Diffusion Barrier for Cu Metallization
    Hong, Tae Eun
    Jung, Jae-Hun
    Yeo, Seungmin
    Cheon, Taehoon
    Bae, So Ik
    Kim, Soo-Hyun
    Yeo, So Jeong
    Kim, Hyo-Suk
    Chung, Taek-Mo
    Park, Bo Keun
    Kim, Chang Gyoun
    Lee, Do-Joong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (03) : 1548 - 1556
  • [25] Hydrogen-plasma-assisted hybrid atomic layer deposition of Ir thin film as novel Cu diffusion barrier
    Song, Sang In
    Lee, Jong Ho
    Choi, Bum Ho
    Lee, Hong Kee
    Shin, Dong Chan
    Lee, Jin Wook
    SURFACE & COATINGS TECHNOLOGY, 2012, 211 : 14 - 17
  • [26] Comparisons of alumina barrier films deposited by thermal and plasma atomic layer deposition
    Jarvis, K. L.
    Evans, P. J.
    Nelson, A.
    Triani, G.
    MATERIALS TODAY CHEMISTRY, 2019, 11 : 8 - 15
  • [27] Growth and characterization of titanium oxide by plasma enhanced atomic layer deposition
    Zhao, Chao
    Hedhili, M. N.
    Li, Jingqi
    Wang, Qingxiao
    Yang, Yang
    Chen, Long
    Li, Liang
    THIN SOLID FILMS, 2013, 542 : 38 - 44
  • [28] Plasma enhanced atomic layer deposition of zinc sulfide thin films
    Kuhs, Jakob
    Dobbelaere, Thomas
    Hens, Zeger
    Detavernier, Christophe
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (01):
  • [29] In vacuo investigations on the nucleation of TaCN by plasma enhanced atomic layer deposition
    Reif, Johanna
    Knaut, Martin
    Killge, Sebastian
    Albert, Matthias
    Bartha, Johann W.
    MICROELECTRONIC ENGINEERING, 2019, 211 : 13 - 17
  • [30] Microscopic modeling and optimal operation of plasma enhanced atomic layer deposition
    Ding, Yangyao
    Zhang, Yichi
    Orkoulas, Gerassimos
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 159 : 439 - 454