Optimized automated cardiac MR scar quantification with GAN-based data augmentation

被引:12
作者
Lustermans, Didier R. P. R. M. [1 ]
Amirrajab, Sina [1 ]
Veta, Mitko [1 ]
Breeuwer, Marcel [1 ,2 ]
Scannell, Cian M. [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Philips Healthcare, Dept MR R&D Clin Sci, Best, Netherlands
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Deep learning; Cardiac MRI; Myocardial scar quantification; Synthetic data; Generative adversarial networks;
D O I
10.1016/j.cmpb.2022.107116
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: The clinical utility of late gadolinium enhancement (LGE) cardiac MRI is limited by the lack of standardization, and time-consuming postprocessing. In this work, we tested the hypothesis that a cas-caded deep learning pipeline trained with augmentation by synthetically generated data would improve model accuracy and robustness for automated scar quantification.Methods: A cascaded pipeline consisting of three consecutive neural networks is proposed, starting with a bounding box regression network to identify a region of interest around the left ventricular (LV) my-ocardium. Two further nnU-Net models are then used to segment the myocardium and, if present, scar. The models were trained on the data from the EMIDEC challenge, supplemented with an extensive syn-thetic dataset generated with a conditional GAN. Results: The cascaded pipeline significantly outperformed a single nnU-Net directly segmenting both the myocardium (mean Dice similarity coefficient (DSC) (standard deviation (SD)): 0.84 (0.09) vs 0.63 (0.20), p < 0.01) and scar (DSC: 0.72 (0.34) vs 0.46 (0.39), p < 0.01) on a per-slice level. The inclusion of the syn-thetic data as data augmentation during training improved the scar segmentation DSC by 0.06 ( p < 0.01). The mean DSC per-subject on the challenge test set, for the cascaded pipeline augmented by synthetic generated data, was 0.86 (0.03) and 0.67 (0.29) for myocardium and scar, respectively.Conclusion: A cascaded deep learning-based pipeline trained with augmentation by synthetically gen-erated data leads to myocardium and scar segmentations that are similar to the manual operator, and outperforms direct segmentation without the synthetic images.(c) 2022 The Author(s). Published by Elsevier B.V.This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:9
相关论文
共 33 条
[1]  
Abbasi-Sureshjani S., 2020, P 3 C MED IM DEEP LE, V121, P6
[2]  
Amirrajab Sina, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12264), P128, DOI 10.1007/978-3-030-59719-1_13
[3]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[4]  
Bowles C, 2018, Arxiv, DOI [arXiv:1810.10863, 10.48550/arXiv.1810.10863]
[5]   Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge [J].
Campello, Victor M. ;
Gkontra, Polyxeni ;
Izquierdo, Cristian ;
Martin-Isla, Carlos ;
Sojoudi, Alireza ;
Full, Peter M. ;
Maier-Hein, Klaus ;
Zhang, Yao ;
He, Zhiqiang ;
Ma, Jun ;
Parreno, Mario ;
Albiol, Alberto ;
Kong, Fanwei ;
Shadden, Shawn C. ;
Acero, Jorge Corral ;
Sundaresan, Vaanathi ;
Saber, Mina ;
Elattar, Mustafa ;
Li, Hongwei ;
Menze, Bjoern ;
Khader, Firas ;
Haarburger, Christoph ;
Scannell, Cian M. ;
Veta, Mitko ;
Carscadden, Adam ;
Punithakumar, Kumaradevan ;
Liu, Xiao ;
Tsaftaris, Sotirios A. ;
Huang, Xiaoqiong ;
Yang, Xin ;
Li, Lei ;
Zhuang, Xiahai ;
Vilades, David ;
Descalzo, Martin L. ;
Guala, Andrea ;
La Mura, Lucia ;
Friedrich, Matthias G. ;
Garg, Ria ;
Lebel, Julie ;
Henriques, Filipe ;
Karakas, Mahir ;
Cavus, Ersin ;
Petersen, Steffen E. ;
Escalera, Sergio ;
Segui, Santi ;
Rodriguez-Palomares, Jose F. ;
Lekadir, Karim .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3543-3554
[6]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[7]   Myocardial Infarction Segmentation From Late Gadolinium Enhancement MRI By Neural Networks and Prior Information [J].
Chen, Zhihao ;
Lalande, Alain ;
Salomon, Michel ;
Decourselle, Thomas ;
Pommier, Thibaut ;
Perrot, Gilles ;
Couturier, Raphael .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[8]   A new automatic algorithm for quantification of myocardial infarction imaged by late gadolinium enhancement cardiovascular magnetic resonance: experimental validation and comparison to expert delineations in multi-center, multi-vendor patient data [J].
Engblom, Henrik ;
Tufvesson, Jane ;
Jablonowski, Robert ;
Carlsson, Marcus ;
Aletras, Anthony H. ;
Hoffmann, Pavel ;
Jacquier, Alexis ;
Kober, Frank ;
Metzler, Bernhard ;
Erlinge, David ;
Atar, Dan ;
Arheden, Hakan ;
Heiberg, Einar .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18
[9]   Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study [J].
Fahmy, Ahmed S. ;
Neisius, Ulf ;
Chan, Raymond H. ;
Rowin, Ethan J. ;
Manning, Warren J. ;
Maron, Martin S. ;
Nezafat, Reza .
RADIOLOGY, 2020, 294 (01) :52-60
[10]   Fully Automated Myocardial Strain Estimation from Cardiovascular MRI-tagged Images Using a Deep Learning Framework in the UK Biobank [J].
Ferdian, Edward ;
Suinesiaputra, Avan ;
Fung, Kenneth ;
Aung, Nay ;
Lukaschuk, Elena ;
Barutcu, Ahmet ;
Maclean, Edd ;
Paiva, Jose ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Petersen, Steffen E. ;
Young, Alistair A. .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (01)