Toward understanding the nature of internal rotation barriers with a new energy partition scheme:: Ethane and n-butane

被引:99
作者
Liu, Shubin [1 ]
Govind, Niranjan [2 ]
机构
[1] Univ N Carolina, Renaissance Comp Inst, Chapel Hill, NC 27599 USA
[2] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA
关键词
D O I
10.1021/jp800376a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of an alternative energy partition scheme where density-based quantification of the steric effect was proposed [Liu, S. B. J. Chem. Phys. 2007, 126, 2441031, the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane and n-butane is systematically investigated in this work. Within the new scheme, the total electronic energy is decomposed into three independent components, steric, electrostatic, and fermionic quantum. The steric energy defined in this way is repulsive, exclusive, and extensive and intrinsically linked to Bader's atoms in molecules approach. Two kinds of differences, adiabatic (with optimal structure) and vertical (with fixed geometry), are considered for the molecules in this work. We find that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer for both molecules, but in the vertical cases the staggered conformer retains a larger steric repulsion. For ethane, a linear relationship between the total energy difference and the fermionic quantum energy difference is discovered. This linear relationship, however, does not hold for n-butane, whose behaviors in energy component differences are found to be more complicated. The impact of basis set and density functional choices on energy components from the new energy partition scheme has been investigated, as has its comparison with another definition of the steric effect in the literature in terms of the natural bond orbital analysis through the Pauli Exclusion Principle. In addition, profiles of conceptual density functional theory reactivity indices as a function of dihedral angle changes have been examined. Put together, these results suggest that the new energy partition scheme provides insights from a different perspective of internal rotation barriers.
引用
收藏
页码:6690 / 6699
页数:10
相关论文
共 83 条
[1]   FREE-ELECTRON TREATMENT OF BARRIER TO INTERNAL ROTATION IN ETHANE [J].
ALEXANDE.MH .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (07) :2423-&
[2]  
Apra E., 2005, NWCHEM COMPUTATIONAL
[3]   Natural bond orbital analysis of steric interactions [J].
Badenhoop, JK ;
Weinhold, F .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (14) :5406-5421
[4]   ORIGIN OF ROTATION AND INVERSION BARRIERS [J].
BADER, RFW ;
CHEESEMAN, JR ;
LAIDIG, KE ;
WIBERG, KB ;
BRENEMAN, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (18) :6530-6536
[5]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[6]   A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1372-1377
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[8]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[9]   The case for steric repulsion causing the staggered conformation of ethane [J].
Bickelhaupt, FM ;
Baerends, EJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (35) :4183-4188
[10]   From ab initio quantum chemistry to molecular dynamics:: The delicate case of hydrogen bonding in ammonia [J].
Boese, AD ;
Chandra, A ;
Martin, JML ;
Marx, D .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (12) :5965-5980