Existence results for elliptic problems with gradient terms via a priori estimates

被引:0
作者
Baldelli, Laura [1 ]
Filippucci, Roberta [2 ]
机构
[1] Univ Firenze, Dept Math, Viale Morgagni 40-44, I-50134 Florence, Italy
[2] Univ Perugia, Dept Math, Via Vanvitelli 1, I-06123 Perugia, Italy
关键词
POSITIVE SOLUTIONS; LOCAL BEHAVIOR; EQUATIONS; REGULARITY; BOUNDARY; CONVECTION; LIOUVILLE; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页数:22
相关论文
共 50 条
[1]  
[Anonymous], 2005, Springer Monogr. Math.
[2]  
[Anonymous], 1983, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[3]   Remarks on regularity for p-Laplacian type equations in non-divergence form [J].
Attouchi, Amal ;
Ruosteenoja, Eero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :1922-1961
[4]   A priori estimates and continuation methods for positive solutions of p-Laplace equations [J].
Azizieh, C ;
Clément, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :213-245
[5]   A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS VIA LIOUVILLE TYPE THEOREMS [J].
Baldelli, Laura ;
Filippucci, Roberta .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07) :1883-1898
[6]   A priori bounds and existence of solutions for some nonlocal elliptic problems [J].
Barrios, Begona ;
Del Pezzo, Leandro ;
Garcia-Melian, Jorge ;
Quaas, Alexander .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) :195-220
[7]  
Brezis H., 1977, Comm. in PDE, V2, P601
[8]   CLASSIFICATION OF SUPERSOLUTIONS AND LIOUVILLE THEOREMS FOR SOME NONLINEAR ELLIPTIC PROBLEMS [J].
Burgos-Perez, M. A. ;
Garcia-Melian, J. ;
Quaas, A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) :4703-4721
[9]  
Cabre X., 1995, AMER MATH SOC CUIUM, V43
[10]   Regularity Results for Nonlocal Equations by Approximation [J].
Caffarelli, Luis ;
Silvestre, Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :59-88