Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing

被引:95
作者
Mi, Hao-Yang [1 ,2 ,3 ]
Jing, Xin [1 ,2 ,3 ]
Cai, Zhiyong [4 ]
Liu, Yuejun [1 ]
Turng, Lih-Sheng [2 ,3 ]
Gong, Shaoqin [2 ,5 ]
机构
[1] Hunan Univ Technol, Sch Packaging & Mat Engn, Zhuzhou 412007, Peoples R China
[2] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[3] Univ Wisconsin Madison, Dept Mech Engn, Madison, WI 53706 USA
[4] USDA, Forest Prod Lab, Madison, WI 53705 USA
[5] Univ Wisconsin Madison, Dept Biomed Engn, Madison, WI 53706 USA
基金
中国国家自然科学基金;
关键词
DRIVEN; BIOCOMPATIBILITY; NANOPARTICLES; CELL;
D O I
10.1039/c8nr05872e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Boosting power generation performance while employing economical and biocompatible materials is an ongoing direction in the field of triboelectric nanogenerators (TENGs). Here, highly porous, biocompatible, cellulose nanofibril (CNF) composite-based TENGs are developed through an environmentally friendly freeze-drying approach. High tribopositivity materials, including silica fiber, human hair, and rabbit fur, are used as fillers in composite TENG fabrication for the first time to enhance the triboelectric output performance. Among them, a CNF/rabbit fur composite aerogel-based TENG offers the optimum energy generation ability with a high power density of 3.4 W m(-2) achieved on a 4.7 M load at a pressure of 30 kPa. Owing to the high output, the porous composite TENG exhibits an excellent energy harvesting performance and high sensitivity in detecting ultralight forces and monitoring human motion when used as a self-powered sensor. This work introduces a new class of highly porous composite TENGs that integrate biocompatibility, low cost, flexibility, high energy generation performance, and sensing sensitivity, as well as providing new strategies for high performance TENG design and fabrication.
引用
收藏
页码:23131 / 23140
页数:10
相关论文
共 58 条
[1]   Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator [J].
Chen, Shuwen ;
Gao, Caizhen ;
Tang, Wei ;
Zhu, Huarui ;
Han, Yu ;
Jiang, Qianwen ;
Li, Tao ;
Cao, Xia ;
Wang, Zhonglin .
NANO ENERGY, 2015, 14 :217-225
[2]   A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers [J].
Chen, Xuexian ;
Han, Mengdi ;
Chen, Haotian ;
Cheng, Xiaoliang ;
Song, Yu ;
Su, Zongming ;
Jiang, Yonggang ;
Zhang, Haixia .
NANOSCALE, 2017, 9 (03) :1263-1270
[3]   Freeze Casting for Assembling Bioinspired Structural Materials [J].
Cheng, Qunfeng ;
Huang, Chuanjin ;
Tomsia, Antoni P. .
ADVANCED MATERIALS, 2017, 29 (45)
[4]   Boosted output performance of triboelectric nanogenerator via electric double layer effect [J].
Chun, Jinsung ;
Ye, Byeong Uk ;
Lee, Jae Won ;
Choi, Dukhyun ;
Kang, Chong-Yun ;
Kim, Sang-Woo ;
Wang, Zhong Lin ;
Baik, Jeong Min .
NATURE COMMUNICATIONS, 2016, 7
[5]   CHARGE GENERATION ON DIELECTRIC SURFACES [J].
DAVIES, DK .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1969, 2 (11) :1533-&
[6]   Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics [J].
Deng, Jianan ;
Kuang, Xiao ;
Liu, Ruiyuan ;
Ding, Wenbo ;
Wang, Aurelia C. ;
Lai, Ying-Chih ;
Dong, Kai ;
Wen, Zhen ;
Wang, Yaxian ;
Wang, Lili ;
Qi, H. Jerry ;
Zhang, Tong ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2018, 30 (14)
[7]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[8]   Tailoring Properties of Cross-Linked Polyimide Aerogels for Better Moisture Resistance, Flexibility, and Strength [J].
Guo, Haiquan ;
Meador, Mary Ann B. ;
McCorkle, Linda ;
Quade, Derek J. ;
Guo, Jiao ;
Hamilton, Bart ;
Cakmak, Miko .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (10) :5422-5429
[9]   Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers [J].
Huang, Tao ;
Wang, Cheng ;
Yu, Hao ;
Wang, Hongzhi ;
Zhang, Qinghong ;
Zhu, Meifang .
NANO ENERGY, 2015, 14 :226-235
[10]   Triboelectric Nanogenerator Based on Human Hair [J].
Jayaweera, E. N. ;
Wijewardhana, K. Rohana ;
Ekanayaka, Thilini K. ;
Shahzad, Amir ;
Song, Jang-Kun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05) :6321-6327