INTERIOR NODAL SETS OF STEKLOV EIGENFUNCTIONS ON SURFACES

被引:13
作者
Zhu, Jiuyi [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, 313 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
nodal sets; upper bound; Steklov eigenfunctions; HAUSDORFF MEASURE; LOWER BOUNDS; EQUATIONS;
D O I
10.2140/apde.2016.9.859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the interior nodal sets N-lambda of Steklov eigenfunctions on connected and compact surfaces with boundary. The optimal vanishing order of Steklov eigenfunctions is shown be C lambda. The singular sets S-lambda consist of finitely many points on the nodal sets. We are able to prove that the Hausdorff measure H-0(S lambda) is at most C lambda(2). Furthermore, we obtain an upper bound for the measure of interior nodal sets, H-1(N-lambda) <= C lambda(3/2). Here the positive constants C depend only on the surfaces.
引用
收藏
页码:859 / 880
页数:22
相关论文
共 23 条
[1]   Quantitative uniqueness for Schrodinger operator with regular potentials [J].
Bakri, Laurent ;
Casteras, Jean-Baptiste .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (13) :1992-2008
[2]   Nodal sets of Steklov eigenfunctions [J].
Bellova, Katarina ;
Lin, Fang-Hua .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :2239-2268
[3]   NODES OF EIGEN-FUNCTIONS OF LAPLACE-BELTRAMI OPERATOR [J].
BRUNING, J .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (01) :15-21
[4]  
Calderon A., 1980, SEM NUM AN ITS APPL, P65, DOI DOI 10.1590/S0101-82052006000200002
[5]   Lower Bounds for Nodal Sets of Eigenfunctions [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) :777-784
[6]  
DONG RT, 1992, J DIFFER GEOM, V36, P493
[7]   NODAL SETS OF EIGENFUNCTIONS ON RIEMANNIAN-MANIFOLDS [J].
DONNELLY, H ;
FEFFERMAN, C .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :161-183
[8]  
Donnelly H., 1990, J AM MATH SOC, V3, P333
[9]  
Donnelly H., 1990, Analysis, Et Cetera, P251
[10]  
Girouard A., 2014, ARXIV14116567