Understanding γ-MnO2 by molecular modeling

被引:31
|
作者
Hill, MR
Freeman, CM
Rossouw, MH
机构
[1] Accelrys GmbH, D-82008 Unterhaching, Germany
[2] Accelrys Inc, San Diego, CA 92121 USA
[3] Delta EMD Pty Ltd, ZA-1200 Nelspruit, South Africa
关键词
gamma-MnO2; EMD; CMD; de Wolff disorder; microtwinning; point defects; X-ray diffraction; molecular modeling;
D O I
10.1016/S0022-4596(03)00393-1
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
De Wolff disorder, microtwinning, and point defects which are characteristic for gamma-MnO2 have been studied using molecular modeling. Particular attention was paid to the effects these defects have on the X-ray diffraction (XRD) pattern. Comparisons with observed XRD patterns allow identification of structural features in chemical (CMD) and electrochemical (EMD) manganese dioxide. The major factor determining the structure of gamma-MnO2 is de Wolff disorder. CMD materials are characterized by a larger percentage of pyrolusite while EMD materials contain more ramsdellite. Microtwinning occurs to a larger extent in EMD than in CMD materials. EMD materials are also higher in energy. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 50 条
  • [1] Understanding of lithium insertion into γ-MnO2 compounds
    Sarciaux, S
    La Salle, AL
    Verbaere, A
    Piffard, Y
    Guyomard, D
    SOLID STATE IONICS V, 1999, 548 : 251 - 260
  • [2] α-MnO2 under pressure: Possible route to δ-MnO2
    Alam, Khorsed
    Seriani, Nicola
    Sen, Prasenjit
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
  • [3] Controllable fabrication of δ-MnO2 microspheres and α-MnO2 nanorods
    Chen, Yong
    Li, Ling
    Xu, Hui
    Hong, Yuzhen
    Yang, Hao
    Tu, Jinchun
    Ma, Yanping
    Li, Jianbao
    MATERIALS AND DESIGN, PTS 1-3, 2011, 284-286 : 450 - +
  • [4] Synthesis and catalytic activity of α-MnO2 and β-MnO2 nanorods
    Song Xu-Chun
    Yang E
    Zheng Yi-Fan
    Wang Yun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (05) : 919 - 922
  • [5] In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts
    Gao, Fengyu
    Tang, Xiaolong
    Yi, Honghong
    Chu, Chao
    Li, Na
    Li, Jingying
    Zhao, Shunzheng
    CHEMICAL ENGINEERING JOURNAL, 2017, 322 : 525 - 537
  • [6] Understanding the Nax MnO2 System: A Thermodynamics and XPS Approach
    Dawar, Rimpi
    Narang, Shubham
    Bhattacharyya, Kaustava
    Aiswarya, Padinhare. M.
    Dutta, Dimple P.
    Mishra, Ratikanta
    INORGANIC CHEMISTRY, 2024, 63 (31) : 14438 - 14448
  • [7] Electrochemical synthesis of α-MnO2 octahedral molecular sieve
    Liao, MY
    Lin, JM
    Wang, JH
    Yang, CT
    Chou, TL
    Mok, BH
    Chong, NS
    Tang, HY
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (04) : 312 - 316
  • [8] Characterizing Molecular Adsorption on Biodegradable MnO2 Nanoscaffolds
    Dey, Gangotri
    Yang, Letao
    Lee, Ki-Bum
    Wang, Lu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (50): : 29017 - 29027
  • [9] Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor
    Jae-Hun Jeong
    Jong Woo Park
    Duck Weon Lee
    Ray H. Baughman
    Seon Jeong Kim
    Scientific Reports, 9
  • [10] Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications
    Ekaterina A. Arkhipova
    Anton S. Ivanov
    Konstantin I. Maslakov
    Roman Yu. Novotortsev
    Serguei V. Savilov
    Hui Xia
    Andrey V. Desyatov
    Sergey M. Aldoshin
    Ionics, 2022, 28 : 3501 - 3509