Synergizing Photo-Thermal H2 and Photovoltaics into a Concentrated Sunlight Use

被引:43
作者
Tang, Sanli [1 ,2 ,6 ]
Xing, Xueli [1 ,2 ]
Yu, Wei [3 ]
Sun, Jie [4 ]
Xuan, Yimin [5 ]
Wang, Lu [6 ]
Xu, Yangfan [6 ]
Hong, Hui [1 ,2 ]
Jin, Hongguang [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[3] Shanghai Polytech Univ, Coll Engn, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Nanjing 210016, Peoples R China
[6] Univ Toronto, Dept Chem, Solar Fuels Grp, 80 St George St, Toronto, ON M5S 3H6, Canada
基金
中国国家自然科学基金;
关键词
SOLAR HYDROGEN-PRODUCTION; CONVERSION EFFICIENCY; ENERGY-CONVERSION; INFRARED LIGHT; WATER; METHANOL; CO2; SYNGAS; PHOTOCATALYSIS; PERFORMANCE;
D O I
10.1016/j.isci.2020.101012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar hydrogen and electricity are promising high energy-density renewable sources. Although photochemistry or photovoltaics are attractive routes, special challenge arises in sunlight conversion efficiency. To improve efficiency, various semiconductor materials have been proposed with selective sunlight absorption. Here, we reported a hybrid system synergizing photo-thermochemical hydrogen and photovoltaics, harvesting full-spectrum sunlight in a cascade manner. A simple suspension of Au-TiO2 in water/methanol serves as a spectrum selector, absorbing ultraviolet-visible and infrared energy for rapid photo-thermochemical hydrogen production. The transmitted visible and near-infrared energy fits the photovoltaic bandgap and retains the high efficiency of a commercial photovoltaic cell under different solar concentration values. The experimental design achieved an overall efficiency of 4.2% under 12 suns solar concentration. Furthermore, the results demonstrated a reduced energy loss in full-spectrum energy conversion into hydrogen and electricity. Such simple integration of photo-thermochemical hydrogen and photovoltaics would create a pathway toward cascading use of sunlight energy.
引用
收藏
页数:27
相关论文
共 59 条
[1]  
[Anonymous], 2017, INT J HYDROGEN ENERG, DOI DOI 10.1016/J.IJHYDENE.2017.03.194
[2]  
[Anonymous], PHYS STATUS SOLIDI
[3]  
Bejan A., 2016, IRREVERSIBLE THERMOD, V4th ed.
[4]   Light intensity effects on photocatalytic water splitting with a titania catalyst [J].
Bell, Stuart ;
Will, Geoffrey ;
Bell, John .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (17) :6938-6947
[5]   Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex [J].
Cao, Yang ;
Zhou, Peng ;
Tu, Yongguang ;
Liu, Zheng ;
Dong, Bo-Wei ;
Azad, Aryan ;
Ma, Dongge ;
Wang, Dong ;
Zhang, Xu ;
Yang, Yang ;
Jiang, Shang-Da ;
Zhu, Rui ;
Guo, Shaojun ;
Mo, Fanyang ;
Ma, Wanhong .
ISCIENCE, 2019, 20 :195-+
[6]   Continuous flow gas phase photoreforming of methanol at elevated reaction temperatures sensitised by Pt/TiO2 [J].
Caravaca, A. ;
Daly, H. ;
Smith, M. ;
Mills, A. ;
Chansai, S. ;
Hardacre, C. .
REACTION CHEMISTRY & ENGINEERING, 2016, 1 (06) :649-657
[7]   Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects [J].
Caudillo-Flores, Uriel ;
Agostini, Giovanni ;
Marini, Carlo ;
Kubacka, Anna ;
Fernandez-Garcia, Marcos .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 256
[8]   One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production [J].
Chiarello, Gian Luca ;
Dozzi, Maria Vittoria ;
Scavini, Marco ;
Grunwaldt, Jan-Dierk ;
Selli, Elena .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 160 :144-151
[9]   Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2 [J].
Chiarello, Gian Luca ;
Aguirre, Myriam H. ;
Selli, Elena .
JOURNAL OF CATALYSIS, 2010, 273 (02) :182-190
[10]   Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation [J].
Coridan, Robert H. ;
Nielander, Adam C. ;
Francis, Sonja A. ;
McDowell, Matthew T. ;
Dix, Victoria ;
Chatman, Shawn M. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2886-2901