Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport

被引:90
作者
Jones, Seamus D. [1 ,2 ]
Nguyen, Howie [3 ]
Richardson, Peter M. [2 ]
Chen, Yan-Qiao [2 ,4 ]
Wyckoff, Kira E. [2 ]
Hawker, Craig J. [2 ]
Clement, Raphaele J. [2 ]
Fredrickson, Glenn H. [1 ,2 ]
Segalman, Rachel A. [1 ,2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Mat Res Lab, Santa Barbara, CA 93110 USA
[2] Univ Calif Santa Barbara, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93110 USA
[3] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93110 USA
[4] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93110 USA
基金
美国国家科学基金会;
关键词
ION-TRANSPORT; CONDUCTIVITY; DYNAMICS; SALT; MECHANISMS; BATTERIES;
D O I
10.1021/acscentsci.1c01260
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Progress toward durable and energy-dense lithium-ion batteries has been hindered by instabilities at electrolyte- electrode interfaces, leading to poor cycling stability, and by safety concerns associated with energy-dense lithium metal anodes. Solid polymeric electrolytes (SPEs) can help mitigate these issues; however, the SPE conductivity is limited by sluggish polymer segmental dynamics. We overcome this limitation via zwitterionic SPEs that self-assemble into superionically conductive domains, permitting decoupling of ion motion and polymer segmental rearrangement. Although crystalline domains are conventionally detrimental to ion conduction in SPEs, we demonstrate that semicrystalline polymer electrolytes with labile ion-ion interactions and tailored ion sizes exhibit excellent lithium conductivity (1.6 mS/cm) and selectivity (t(+) approximate to 0.6-0.8). This new design paradigm for SPEs allows for simultaneous optimization of previously orthogonal properties, including conductivity, Li selectivity, mechanics, and processability.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 49 条
[1]   Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes? [J].
Agapov, A. L. ;
Sokolov, A. P. .
MACROMOLECULES, 2011, 44 (11) :4410-4414
[2]   Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity [J].
Bocharova, V. ;
Sokolov, A. P. .
MACROMOLECULES, 2020, 53 (11) :4141-4157
[3]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[4]   POLYMER ELECTROLYTES [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (17) :3187-3203
[5]   Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries [J].
Cabana, Jordi ;
Kwon, Bob Jin ;
Hu, Linhua .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (02) :299-308
[6]   Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes [J].
Chintapalli, Mahati ;
Timachova, Ksenia ;
Olson, Kevin R. ;
Mecham, Sue J. ;
Devaux, Didier ;
DeSimone, Joseph M. ;
Balsara, Nitash P. .
MACROMOLECULES, 2016, 49 (09) :3508-3515
[7]   Design of Stretchable and Self-Healing Gel Electrolytes via Fully Zwitterionic Polymer Networks in Solvate Ionic Liquids for Li-Based Batteries [J].
D'Angelo, Anthony J. ;
Panzer, Matthew J. .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2913-2922
[8]   DYNAMICS OF THE STRONG POLYMER OF N-LAURYL METHACRYLATE BELOW AND ABOVE THE GLASS-TRANSITION [J].
FLOUDAS, G ;
PLACKE, P ;
STEPANEK, P ;
BROWN, W ;
FYTAS, G ;
NGAI, KL .
MACROMOLECULES, 1995, 28 (20) :6799-6807
[9]   Structure and dynamics of poly(n-decyl methacrylate) below and above the glass transition [J].
Floudas, G ;
Stepanek, P .
MACROMOLECULES, 1998, 31 (20) :6951-6957