On Sylow permutable subgroups of finite groups

被引:1
作者
Ballester-Bolinches, Adolfo [1 ]
Heineken, Hermann [2 ]
Spagnuolo, Francesca [1 ]
机构
[1] Univ Valencia, Dept Matemat, Dr Moliner 50, E-46100 Valencia, Spain
[2] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
基金
中国国家自然科学基金;
关键词
Finite groups; subnormal subgroups; permutability; S-permutability;
D O I
10.1515/forum-2016-0262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is called Sylow permutable, or S-permutable, in G if H permutes with all Sylow p-subgroups of G for all primes p. A group G is said to be a PST-group if Sylow permutability is a transitive relation in G. We show that a group G which is factorised by a normal subgroup and a subnormal PST-subgroup of odd order is supersoluble. As a consequence, the normal closure S-G of a subnormal PST-subgroup S of odd order of a group G is supersoluble, and the subgroup generated by subnormal PST-subgroups of G of odd order is supersoluble as well.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 8 条
[1]   Some special classes of finite soluble PST-groups [J].
Ballester-Bolinches A. ;
Beidleman J.C. .
Ricerche di Matematica, 2015, 64 (2) :325-330
[2]  
Ballester-Bolinches A., 2010, GRUYTER EXP MATH, V53
[3]   On the fitting core of a formation [J].
Beidleman, JC ;
Heineken, H .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 68 (01) :107-112
[4]  
Chen Z., 1987, J SW NORMAL U NAT SC, V12, P1, DOI DOI 10.13718/J.CNKI.XSXB.1987.01.001
[5]   FINITE-GROUPS GENERATED BY SUBNORMAL T-SUBGROUPS [J].
COSSEY, J .
GLASGOW MATHEMATICAL JOURNAL, 1995, 37 :363-371
[6]  
DOERK K, 1992, GRUYTER EXP MATH, V4
[7]   Semipermutable π-subgroups [J].
Isaacs, I. M. .
ARCHIV DER MATHEMATIK, 2014, 102 (01) :1-6
[8]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169