Moser-Trudinger inequalities without boundary conditions and isoperimetric problems

被引:55
作者
Cianchi, A [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
关键词
Sobolev inequalities; sharp constants; relative isoperimetric inequalites; rearrangements;
D O I
10.1512/iumj.2005.54.2589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The best constant is exhibited in Trudinger's exponential inequality for functions from the Sobolev space W-1,W-n (Omega), with Omega subset of R-n and n >= 2. This complements a classical result by Moser dealing with the subspace W-0(1,n) (Omega). An extension to the borderline Lorentz-Sobolev spaces (WLn,q)-L-1 (Omega) with 1 < q <= infinity is also established. A key step in our proofs is an asymptotically sharp relative isoperimetric inequality for domains in Rn.
引用
收藏
页码:669 / 705
页数:37
相关论文
共 43 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   Vanishing exponential integrability for functions whose gradients belong to Ln(log(e+L))α [J].
Adams, DR ;
Hurri-Syrjänen, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :162-178
[3]  
Alvino A, 1996, POTENTIAL ANAL, V5, P273
[4]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[5]  
[Anonymous], 1977, REND ACCAD SCI FIS M
[6]  
Bennett C., 1988, PURE APPL MATH, V129
[7]  
BERARD P, 1982, ANN SCI ECOLE NORM S, V15, P513
[8]   ESTIMATES AND EXTREMALS FOR ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
BRANSON, TP ;
CHANG, SYA ;
YANG, PC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :241-262
[9]  
Brezis Haim, 1980, Commun. Partial Differ. Equ., V5, P773, DOI 10.1080/03605308008820154
[10]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153