Error of the Finite Element Approximation for a Differential Eigenvalue Problem with Nonlinear Dependence on the Spectral Parameter

被引:0
作者
Samsonov, A. A. [1 ]
Solov'ev, P. S. [1 ]
Solov'ev, S. I. [1 ]
Korosteleva, D. M. [2 ]
机构
[1] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
[2] Kazan State Power Engn Univ, Kazan 420066, Russia
基金
俄罗斯科学基金会;
关键词
eigenvalue; eigenfunction; nonlinear eigenvalue problem; ordinary differential equation; finite element method; BUBNOV-GALERKIN METHOD; ITERATIVE METHODS; EIGENVIBRATIONS; SUPERCONVERGENCE; PERTURBATIONS; BEAM;
D O I
10.1134/S199508021911026X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The positive definite ordinary differential nonlinear eigenvalue problem of the second order with homogeneous Dirichlet boundary condition is considered. The problem is formulated as a symmetric variational eigenvalue problem with nonlinear dependence of the spectral parameter in a real infinite-dimensional Hilbert space. The variational eigenvalue problem consists in finding eigenvalues and corresponding eigenfunctions of the eigenvalue problem for a symmetric positive definite bounded bilinear form with respect to a symmetric positive definite completely continuous bilinear form in a real infinite-dimensional Hilbert space. The variational eigenvalue problem is approximated by the mesh scheme of the finite element method on the uniform grid. For constructing the mesh scheme, Lagrangian finite elements of arbitrary order are applied. Error estimates of approximate eigenvalues and error estimates of approximate eigenfunctions in the norm of initial real infinite-dimensional Hilbert space are established. These error estimates coincide in the order with error estimates of mesh scheme of the finite element method for linear eigenvalue problems. Moreover, superconvergence estimates for approximate eigenfunctions in the mesh norm with Gauss quadrature nodes are derived. Investigations of this paper generalize well known results for the eigenvalue problem with linear entrance on the spectral parameter.
引用
收藏
页码:2000 / 2007
页数:8
相关论文
共 64 条
[1]  
[Anonymous], 1991, RUSS J NUMER ANAL M
[2]  
[Anonymous], 2001, Spectral problems associated with corner singularities of solutions to elliptic equations
[3]  
[Anonymous], RES J APPL SCI, DOI 10.3923/rjasci.2015.428.435
[4]   Computation of 3D vertex singularities for linear elasticity:: Error estimates for a finite element method on graded meshes [J].
Apel, T ;
Sändig, AM ;
Solov'ev, SI .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (06) :1043-1070
[5]  
Badriev IB, 2018, LOBACHEVSKII J MATH, V39, P448, DOI 10.1134/S1995080218030046
[6]   Mathematical Simulation of the Problem of the Pre-Critical Sandwich Plate Bending in Geometrically Nonlinear One Dimensional Formulation [J].
Badriev, I. B. ;
Banderov, V. V. ;
Makarov, M. V. .
WINTER SCHOOL ON CONTINUOUS MEDIA MECHANICS, 2017, 208
[7]   On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory [J].
Badriev, I. B. ;
Banderov, V. V. ;
Lavrentyeva, E. E. ;
Pankratova, O. V. .
11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158
[8]  
Badriev I. B., 2013, Applied Mechanics and Materials, V392, P188, DOI 10.4028/www.scientific.net/AMM.392.188
[9]  
Badriev I. B., 2013, Applied Mechanics and Materials, V392, P183, DOI 10.4028/www.scientific.net/AMM.392.183
[10]   A study of variable step iterative methods for variational inequalities of the second kind [J].
Badriev, IB ;
Zadvornov, OA ;
Lyashko, AD .
DIFFERENTIAL EQUATIONS, 2004, 40 (07) :971-983