A fixed point approach to the hyers-ulam stability of a functional equation in various normed spaces

被引:14
作者
Kenary, Hassan Azadi [2 ]
Jang, Sun Young [3 ]
Park, Choonkil [1 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Univ Yasuj, Dept Math, Coll Sci, Yasuj 75914353, Iran
[3] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam stability; non-Archimedean normed space; random normed space; fuzzy normed space; fixed point method;
D O I
10.1186/1687-1812-2011-67
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using direct method, Kenary (Acta Universitatis Apulensis, to appear) proved the Hyers-Ulam stability of the following functional equation f(mx+ny)=(m+n)f(x+y)/2 + (m-n)f(x-y)/2 in non-Archimedean normed spaces and in random normed spaces, where m, n are different integers greater than 1. In this article, using fixed point method, we prove the Hyers-Ulam stability of the above functional equation in various normed spaces.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2009, J INEQUAL APPL, DOI DOI 10.1155/2009/214530
[2]  
[Anonymous], 1984, AEQUATIONES MATH
[3]  
[Anonymous], J NONLINEAR SCI APPL
[4]  
[Anonymous], N HOLLAND SERIES PRO
[5]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[6]  
Bag T., 2003, J FUZZY MATH, V11, P687
[7]  
Cdariu L., 2003, J INEQUAL PURE APPL, V4, P4
[8]  
Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
[9]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[10]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436