Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene

被引:132
作者
Perera, Sanjaya D. [1 ,2 ]
Mariano, Ruperto G. [1 ,2 ]
Nijem, Nour [3 ]
Chabal, Yves [3 ]
Ferraris, John P. [1 ,2 ]
Balkus, Kenneth J., Jr. [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Alan G MacDiarmid Nanotech Inst, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Lab Surface & Nanostruct Modificat, Richardson, TX 75080 USA
关键词
Graphene; Graphene oxide; Reduced graphene oxide; Supercapacitors; GRAPHITE OXIDE; REDUCTION; LITHIUM; STORAGE; BATTERIES; DEVICES; ROUTE; CELLS; ANODE; SIZE;
D O I
10.1016/j.jpowsour.2012.04.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg(-1) and SOW h kg(-1) in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg(-1) and 14.7 kW kg(-1) in LiTFSI and EMITFSI, respectively. (C) 2012 Elsevier & B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 62 条
[1]   Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries [J].
Abouimrane, Ali ;
Compton, Owen C. ;
Amine, Khalil ;
Nguyen, SonBinh T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12800-12804
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J].
Balducci, A. ;
Dugas, R. ;
Taberna, P. L. ;
Simon, P. ;
Plee, D. ;
Mastragostino, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :922-927
[4]   Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons [J].
Bhardwaj, Tarun ;
Antic, Aleks ;
Pavan, Barbara ;
Barone, Veronica ;
Fahlman, Bradley D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (36) :12556-12558
[5]   On the application of ionic liquids for rechargeable Li batteries: High voltage systems [J].
Borgel, V. ;
Markevich, E. ;
Aurbach, D. ;
Semrau, G. ;
Schmidt, M. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :331-336
[6]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[7]   High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J].
Chen, Yao ;
Zhang, Xiong ;
Zhang, Dacheng ;
Yu, Peng ;
Ma, Yanwei .
CARBON, 2011, 49 (02) :573-580
[8]   Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties [J].
Dong, Xiaochen ;
Su, Ching-Yuan ;
Zhang, Wenjing ;
Zhao, Jianwen ;
Ling, Qidan ;
Huang, Wei ;
Chen, Peng ;
Li, Lain-Jong .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (09) :2164-2169
[9]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[10]   Reduction of graphite oxide using alcohols [J].
Dreyer, Daniel R. ;
Murali, Shanthi ;
Zhu, Yanwu ;
Ruoff, Rodney S. ;
Bielawski, Christopher W. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (10) :3443-3447