Multisensor Composite Kernels Based on Extreme Learning Machines

被引:16
作者
Ghamisi, Pedram [1 ]
Rash, Behnood [2 ]
Benediktsson, Jon Atli [3 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-09599 Freiberg, Germany
[2] Univ Iceland, Fac Elect & Comp Engn, Inst Technol, 220 Hafnarfjorour, Reykjavik, Iceland
[3] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Classification; extinction profiles (EPs); extreme learning machine; hyperspectral; light detection and ranging (LiDAR); multisensor data fusion; EXTINCTION PROFILES; CLASSIFICATION; FUSION;
D O I
10.1109/LGRS.2018.2869888
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we first propose multisensor composite kernel (MCK) extreme learning machines to fuse hyperspectral and light detection and ranging (LiDAR) features effectively. Then, based on the MCK, we develop a fully automatic fusion framework. In the proposed framework, spatial and elevation features of hyperspectral and LiDAR data are first extracted using extinction profiles. Then, hyperspectral Stein's unbiased risk estimator is utilized to extract the subspace (informative features) of spectral, spatial, and elevation features. The obtained results indicate that the proposed approach can successfully integrate and classify hyperspectral and LiDAR images to provide accurate classification results classification accuracies in an automatic manner.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 15 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[3]  
GHAMISI P, 2017, IEEE J-STARS, V10, P3011, DOI DOI 10.1109/JSTARS.2016.2634863
[4]   Advanced Spectral Classifiers for Hyperspectral Images A review [J].
Ghamisi, Pedram ;
Plaza, Javier ;
Chen, Yushi ;
Li, Jun ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (01) :8-32
[5]   Hyperspectral Data Classification Using Extended Extinction Profiles [J].
Ghamisi, Pedram ;
Souza, Roberto ;
Benediktsson, Jon Atli ;
Rittner, Leticia ;
Lotufo, Roberto ;
Zhu, Xiao Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) :1641-1645
[6]   Extinction Profiles for the Classification of Remote Sensing Data [J].
Ghamisi, Pedram ;
Souza, Roberto ;
Benediktsson, Jon Atli ;
Zhu, Xiao Xiang ;
Rittner, Leticia ;
Lotufo, Roberto A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :5631-5645
[7]   Multiple Kernel Learning for Hyperspectral Image Classification: A Review [J].
Gu, Yanfeng ;
Chanussot, Jocelyn ;
Jia, Xiuping ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6547-6565
[8]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[9]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[10]   Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning [J].
Khodadadzadeh, Mahdi ;
Li, Jun ;
Prasad, Saurabh ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2971-2983