Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression

被引:27
|
作者
Minaei, Saeid [1 ]
Soltanikazemi, Maryam [1 ]
Shafizadeh-Moghadam, Hossein [2 ]
Mahdavian, Alireza [1 ]
机构
[1] Tarbiat Modares Univ, Fac Agr, Biosyst Engn Dept, Tehran 1411713116, Iran
[2] Tarbiat Modares Univ, Dept Water Engn & Management, Tehran, Iran
关键词
GEMI index; Spatial cross validation; Crop growth Monitoring; Red-edge bands; CANOPY NITROGEN; RED-EDGE; CHLOROPHYLL; PREDICTION; MACHINE; ALGORITHM; MODELS; LAND; TREE; CROP;
D O I
10.1016/j.compag.2022.107130
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nitrogen is an essential factor for assessing the quality of sugarcane during the growing season, as deficiency of this component significantly reduces crop yield . The Kjeldahl method is the most common approach to measuring sugarcane nitrogen, but it is a laborious, costly, and time-consuming process. Conversely, multi -spectral satellite imagery can provide timely, cost-effective, and large-scale information on the nitrogen content in sugarcane fields. The current study applied random forest (RF) and support vector regression (SVR) models to estimate sugarcane leaf nitrogen using vegetation indices and spectral bands of Sentinel-2. In-situ data was taken from 45 farms (1125 ha) in a sugarcane production agro-industrial complex in southwest Iran. The global environmental monitoring index (GEMI), chlorophyll index green (Clgreen), and Sentinel-2 red-edge position index (S2REP) were found to be the most important variables related to sugarcane nitrogen. The coefficient of determination (R2) for RF and SVR was 0.59 and 0.58, respectively, and the corresponding root mean square error (RMSE) was 0.08 and 0.09, respectively. Despite the similar performances of the two models, RF showed higher accuracy; however, to improve the results, the use of multi-temporal data for model calibration is recommended.
引用
收藏
页数:9
相关论文
共 7 条
  • [1] A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices
    Colonna, Roberto
    Genzano, Nicola
    Ciancia, Emanuele
    Filizzola, Carolina
    Fiorentino, Costanza
    D'Antonio, Paola
    Tramutoli, Valerio
    LAND, 2024, 13 (11)
  • [2] Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest
    Lopez-Calderon, Magali J.
    Estrada-Avalos, Juan
    Rodriguez-Moreno, Victor M.
    Mauricio-Ruvalcaba, Jorge E.
    Martinez-Sifuentes, Aldo R.
    Delgado-Ramirez, Gerardo
    Miguel-Valle, Enrique
    AGRICULTURE-BASEL, 2020, 10 (10): : 1 - 15
  • [3] Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3
    Clevers, J. G. P. W.
    Gitelson, A. A.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 344 - 351
  • [4] Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression
    Amankulova, Khilola
    Farmonov, Nizom
    Akramova, Parvina
    Tursunov, Ikrom
    Mucsi, Laszlo
    HELIYON, 2023, 9 (06)
  • [5] Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data
    Abdel-Rahman, Elfatih M.
    Ahmed, Fethi B.
    Ismail, Riyad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (02) : 712 - 728
  • [6] Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imagery
    Osco, Lucas Prado
    Marques Ramos, Ana Paula
    Pereira, Danilo Roberto
    Saito Moriya, Erika Akemi
    Imai, Nilton Nobuhiro
    Matsubara, Edson Takashi
    Estrabis, Nayara
    de Souza, Mauricio
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    Li, Jonathan
    Liesenberg, Veraldo
    Creste, Jose Eduardo
    REMOTE SENSING, 2019, 11 (24)
  • [7] Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods
    Crusiol, L. G. T.
    Sun, Liang
    Sibaldelli, R. N. R.
    Felipe Junior, V
    Furlaneti, W. X.
    Chen, R.
    Sun, Z.
    Wuyun, D.
    Chen, Z.
    Nanni, M. R.
    Furlanetto, R. H.
    Cezar, E.
    Nepomuceno, A. L.
    Farias, J. R. B.
    PRECISION AGRICULTURE, 2022, 23 (03) : 1093 - 1123