Skeletal muscle mitochondrial DNA content in exercising humans

被引:39
|
作者
Marcuello, A
González-Alonso, J
Calbet, JAL
Damsgaard, R
López-Pérez, MJ
Díez-Sánchez, C
机构
[1] Univ Zaragoza, Dept Biochem Mol & Cell Biol, E-50013 Zaragoza, Spain
[2] Univ Copenhagen, Rigshosp, Copenhagen Muscle Res Ctr, DK-1168 Copenhagen, Denmark
[3] Univ Las Palmas Gran Canaria, Dept Educ Phys, Las Palmas Gran Canaria, Spain
关键词
human skeletal muscle; mtDNA content; exercise;
D O I
10.1152/japplphysiol.00289.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; similar to 60% maximal oxygen consumption ((V) over dot o(2max))] and short repeated high-intensity exercise (5-8 min; similar to 110% (V) over dot o(2max)). In control resting and light exercise (2 h; similar to 25% (V) over dot o(2max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 It of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.
引用
收藏
页码:1372 / 1377
页数:6
相关论文
共 50 条
  • [41] Induction and Assessment of Exertional Skeletal Muscle Damage in Humans
    Deyhle, Michael R.
    Sorensen, Jacob R.
    Hyldahl, Robert D.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (118):
  • [42] Skeletal Muscle Lipid Peroxidation and Insulin Resistance in Humans
    Ingram, Katherine H.
    Hill, Helliner
    Moellering, Douglas R.
    Hill, Bradford G.
    Lara-Castro, Cristina
    Newcomer, Bradley
    Brandon, L. Jerome
    Ingalls, Christopher P.
    Penumetcha, Meera
    Rupp, Jeffrey C.
    Garvey, W. Timothy
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2012, 97 (07): : E1182 - E1186
  • [43] ANALYSES OF MITOCHONDRIAL RESPIRATORY-CHAIN FUNCTION AND MITOCHONDRIAL-DNA DELETION IN HUMAN SKELETAL-MUSCLE - EFFECT OF AGING
    COOPER, JM
    MANN, VM
    SCHAPIRA, AHV
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 1992, 113 (01) : 91 - 98
  • [44] Muscle-Liver Substrate Fluxes in Exercising Humans and Potential Effects on Hepatic Metabolism
    Hu, Chunxiu
    Hoene, Miriam
    Plomgaard, Peter
    Hansen, Jakob S.
    Zhao, Xinjie
    Li, Jia
    Wang, Xiaolin
    Clemmesen, Jens O.
    Secher, Niels H.
    Haering, Hans U.
    Lehmann, Rainer
    Xu, Guowang
    Weigert, Cora
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2020, 105 (04): : 1196 - 1209
  • [45] Effect of mild carboxy-hemoglobin on exercising skeletal muscle:: intravascular and intracellular evidence
    Richardson, RS
    Noyszewski, EA
    Saltin, B
    González-Alonso, J
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2002, 283 (05) : R1131 - R1139
  • [46] Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle
    Pesce, V
    Cormio, A
    Fracasso, F
    Vecchiet, J
    Felzani, G
    Lezza, AMS
    Cantatore, P
    Gadaleta, MN
    FREE RADICAL BIOLOGY AND MEDICINE, 2001, 30 (11) : 1223 - 1233
  • [47] Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle
    Hafen, Paul S.
    Preece, Coray N.
    Sorensen, Jacob R.
    Hancock, Chad R.
    Hyldahl, Robert D.
    JOURNAL OF APPLIED PHYSIOLOGY, 2018, 125 (05) : 1447 - 1455
  • [48] Can non-equilibrium thermodynamics explain skeletal muscle insulin resistance due to low mitochondrial content?
    Mandarino, Lawrence J.
    Willis, Wayne T.
    LANCET DIABETES & ENDOCRINOLOGY, 2023, 11 (03): : 149 - 151
  • [49] Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle
    Gurd, Brendon J.
    Yoshida, Yuko
    McFarlan, Jay T.
    Holloway, Graham P.
    Moyes, Chris D.
    Heigenhauser, George J. F.
    Spriet, Lawrence
    Bonen, Arend
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2011, 301 (01) : R67 - R75
  • [50] Mitochondrial breakdown in skeletal muscle and the emerging role of the lysosomes
    Triolo, Matthew
    Hood, David A.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2019, 661 : 66 - 73