On the Sylow graph of a group and Sylow normalizers

被引:13
作者
Kazarin, L. S. [1 ]
Martinez-Pastor, A. [2 ]
Perez-Ramos, M. D. [3 ]
机构
[1] Yaroslavl P Demidov State Univ, Dept Math, Yaroslavl 150000, Russia
[2] Univ Politecn Valencia, Escuela Tecn Super Ingn Informat, Inst Univ Matemat Pura & Aplicada IUMPA UPV, Valencia 46022, Spain
[3] Univ Valencia, Dept Algebra, E-46100 Burjassot, Valencia, Spain
关键词
FINITE-GROUPS;
D O I
10.1007/s11856-011-0138-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and G (p) be a Sylow p-subgroup of G for a prime p in pi(G), the set of all prime divisors of the order of G. The automiser A (p) (G) is defined to be the group N (G) (G (p) )/G (p) C (G) (G (p) ). We define the Sylow graph I" (A) (G) of the group G, with set of vertices pi(G), as follows: Two vertices p, q a pi(G) form an edge of I" (A) (G) if either q a pi(A (p) (G)) or p a pi(A (q) (G)). The following result is obtained Theorem: Let G be a finite almost simple group. Then the graph I" (A) (G) is connected and has diameter at most 5. We also show how this result can be applied to derive information on the structure of a group from the normalizers of its Sylow subgroups.
引用
收藏
页码:251 / 271
页数:21
相关论文
共 21 条
[1]  
[Anonymous], COMPOSITIO MATH
[2]  
[Anonymous], 1972, SIMPLE GROUPS LIE TY
[3]  
Arad Z., 1981, Houston Journal of Mathematics, V7, P23
[4]   SEMI-SIMPLE ELEMENTS OF ORDER 3 IN FINITE CHEVALLEY GROUPS [J].
AZAD, H .
JOURNAL OF ALGEBRA, 1979, 56 (02) :481-498
[5]  
BALLESTERBOLINC.A, 2003, LONDON MATH SOC LECT, V304, P31
[6]   ON FINITE-GROUPS WITH NILPOTENT SYLOW-NORMALIZERS [J].
BIANCHI, M ;
MAURI, AGB ;
HAUCK, P .
ARCHIV DER MATHEMATIK, 1986, 47 (03) :193-197
[7]  
Bourbaki N., 1968, ELEMENTS MATH GROUPE
[8]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[9]   Saturated formations closed under Sylow normalizers [J].
D'Aniello, A ;
De Vivo, C ;
Giordano, G ;
Pérez-Ramos, MD .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (08) :2801-2808
[10]  
DAniello A., 2007, Atti Semin. Mat. Fis. Univ. Modena, V55, P107