Consistent pseudopotential interactions in lattice Boltzmann models

被引:49
作者
Sbragaglia, M. [1 ,2 ]
Shan, X. [3 ]
机构
[1] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, INFN, I-00133 Rome, Italy
[3] EXA Corp, Burlington, MA 01803 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 03期
关键词
SIMULATION; EQUATIONS; STATE;
D O I
10.1103/PhysRevE.84.036703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We outline a systematic procedure on how to construct and derive interactions for nonideal lattice fluids. Using a mesoscopic approach based on exact lattice theories, we prove the consistency of the resulting diffuse interface theory with continuum thermodynamics. Translated in the framework of the so called "Shan-Chen" model for nonideal lattice fluids, this paper shows how to adjust the associated pseudopotentials to reproduce a free energy model based on a square gradient theory of equilibrium interfaces.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]   Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle [J].
Benzi, R. ;
Biferale, L. ;
Sbragaglia, M. ;
Succi, S. ;
Toschi, F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations [J].
Benzi, R. ;
Sbragaglia, M. ;
Succi, S. ;
Bernaschi, M. ;
Chibbaro, S. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)
[5]  
Brennen C.E., 2005, Fundamentals of multiphase flow
[6]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[7]   NOTE ON N-DIMENSIONAL HERMITE POLYNOMIALS [J].
GRAD, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1949, 2 (04) :325-330
[8]   Discrete Boltzmann equation model for nonideal gases [J].
He, XY ;
Shan, XW ;
Doolen, GD .
PHYSICAL REVIEW E, 1998, 57 (01) :R13-R16
[9]   Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows [J].
He, XY ;
Doolen, GD .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) :309-328
[10]   Slip flow over structured surfaces with entrapped microbubbles [J].
Hyvaluoma, Jari ;
Harting, Jens .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)